Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(15): 8841-8851, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35424859

ABSTRACT

The synthesis of new chiral copper(ii) complexes with terpene derivatives of ethylenediamine and the results of studying their antibacterial, antifungal and antioxidant activity in vitro are discussed. All studied copper complexes (1-4) showed significantly higher antifungal activity against the strains of C. albicans, S. salmonicolor and P. notatum compared to the activity of the clinical antifungal drug amphotericin. High antibacterial activity of copper complexes with terpene derivatives of ethylenediamine was revealed against the S. aureus (MRSA) strain, which is resistant to the reference antibiotic ciprofloxacin. Using various test systems, a comparative assessment of the antioxidant activity (AOA) of the synthesized copper complexes and the ligands was carried out. The salen-type complex 4, which has the highest AOA in the model of initiated oxidation of a substrate containing animal lipids, was superior to other copper complexes in the ability to protect erythrocytes under conditions of H2O2-induced hemolysis.

2.
Antibiotics (Basel) ; 9(5)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466236

ABSTRACT

In an era of multidrug-resistant bacterial infections overshadowed by a lack of innovation in the antimicrobial drug development pipeline, there has been a resurgence in multidisciplinary approaches aimed at tackling this global health problem. One such approach is to use metal complexes as a framework for new antimicrobials. Indeed, in this context, bismuth-, silver- and gold-derived compounds in particular have displayed demonstrable antimicrobial activity. In this work, we discuss the antimicrobial and antifungal activities of terpene-derived chiral palladium complexes against Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, Candida albicans, and Cryptococcus neoformans. It was established that all studied coordination compounds of palladium were highly active antifungal drugs. In contrast, the subset of palladacycles possessing a palladium-carbon bond were only active against the Gram-positive bacterium Staphylococcus aureus. All compounds were inactive against the Gram-negative bacteria tested.

SELECTION OF CITATIONS
SEARCH DETAIL
...