Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
2.
Cell ; 186(10): 2127-2143.e22, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37098344

ABSTRACT

Pathogen infection and tissue injury are universal insults that disrupt homeostasis. Innate immunity senses microbial infections and induces cytokines/chemokines to activate resistance mechanisms. Here, we show that, in contrast to most pathogen-induced cytokines, interleukin-24 (IL-24) is predominately induced by barrier epithelial progenitors after tissue injury and is independent of microbiome or adaptive immunity. Moreover, Il24 ablation in mice impedes not only epidermal proliferation and re-epithelialization but also capillary and fibroblast regeneration within the dermal wound bed. Conversely, ectopic IL-24 induction in the homeostatic epidermis triggers global epithelial-mesenchymal tissue repair responses. Mechanistically, Il24 expression depends upon both epithelial IL24-receptor/STAT3 signaling and hypoxia-stabilized HIF1α, which converge following injury to trigger autocrine and paracrine signaling involving IL-24-mediated receptor signaling and metabolic regulation. Thus, parallel to innate immune sensing of pathogens to resolve infections, epithelial stem cells sense injury signals to orchestrate IL-24-mediated tissue repair.


Subject(s)
Cytokines , Wounds and Injuries , Animals , Mice , Adaptive Immunity , Chemokines , Epidermis , Immunity, Innate , Wounds and Injuries/immunology
3.
Cell Stem Cell ; 29(7): 1067-1082.e18, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35728595

ABSTRACT

Barrier epithelia depend upon resident stem cells for homeostasis, defense, and repair. Epithelial stem cells of small and large intestines (ISCs) respond to their local microenvironments (niches) to fulfill a continuous demand for tissue turnover. The complexity of these niches and underlying communication pathways are not fully known. Here, we report a lymphatic network at the intestinal crypt base that intimately associates with ISCs. Employing in vivo loss of function and lymphatic:organoid cocultures, we show that crypt lymphatics maintain ISCs and inhibit their precocious differentiation. Pairing single-cell and spatial transcriptomics, we apply BayesPrism to deconvolve expression within spatial features and develop SpaceFold to robustly map the niche at high resolution, exposing lymphatics as a central signaling hub for the crypt in general and ISCs in particular. We identify WNT-signaling factors (WNT2, R-SPONDIN-3) and a hitherto unappreciated extracellular matrix protein, REELIN, as crypt lymphatic signals that directly govern the regenerative potential of ISCs.


Subject(s)
Intestines , Stem Cells , Cell Proliferation , Intestinal Mucosa/metabolism , Organoids , Signal Transduction , Wnt Proteins/metabolism
5.
Nat Cell Biol ; 22(11): 1396, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33046885

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nat Commun ; 11(1): 3547, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32669546

ABSTRACT

Neutrophils provide first line of host defense against bacterial infections utilizing glycolysis for their effector functions. How glycolysis and its major byproduct lactate are triggered in bone marrow (BM) neutrophils and their contribution to neutrophil mobilization in acute inflammation is not clear. Here we report that bacterial lipopolysaccharides (LPS) or Salmonella Typhimurium triggers lactate release by increasing glycolysis, NADPH-oxidase-mediated reactive oxygen species and HIF-1α levels in BM neutrophils. Increased release of BM lactate preferentially promotes neutrophil mobilization by reducing endothelial VE-Cadherin expression, increasing BM vascular permeability via endothelial lactate-receptor GPR81 signaling. GPR81-/- mice mobilize reduced levels of neutrophils in response to LPS, unless rescued by VE-Cadherin disrupting antibodies. Lactate administration also induces release of the BM neutrophil mobilizers G-CSF, CXCL1 and CXCL2, indicating that this metabolite drives neutrophil mobilization via multiple pathways. Our study reveals a metabolic crosstalk between lactate-producing neutrophils and BM endothelium, which controls neutrophil mobilization under bacterial infection.


Subject(s)
Bone Marrow Cells/immunology , Lactic Acid/metabolism , Neutrophils/immunology , Receptors, G-Protein-Coupled/metabolism , Salmonella Infections/immunology , Animals , Bone Marrow/blood supply , Bone Marrow Cells/metabolism , Disease Models, Animal , Endothelium, Vascular/metabolism , Female , Humans , Lipopolysaccharides/immunology , Male , Mice , Mice, Knockout , Neutrophils/metabolism , Receptors, G-Protein-Coupled/genetics , Salmonella Infections/microbiology , Salmonella typhimurium/immunology , Signal Transduction/immunology
7.
Nat Cell Biol ; 22(6): 640-650, 2020 06.
Article in English | MEDLINE | ID: mdl-32393888

ABSTRACT

Tissue homeostasis and regeneration rely on resident stem cells (SCs), whose behaviour is regulated through niche-dependent crosstalk. The mechanisms underlying SC identity are still unfolding. Here, using spatiotemporal gene ablation in murine hair follicles, we uncover a critical role for the transcription factors (TFs) nuclear factor IB (NFIB) and IX (NFIX) in maintaining SC identity. Without NFI TFs, SCs lose their hair-regenerating capability, and produce skin bearing striking resemblance to irreversible human alopecia, which also displays reduced NFIs. Through single-cell transcriptomics, ATAC-Seq and ChIP-Seq profiling, we expose a key role for NFIB and NFIX in governing super-enhancer maintenance of the key hair follicle SC-specific TF genes. When NFIB and NFIX are genetically removed, the stemness epigenetic landscape is lost. Super-enhancers driving SC identity are decommissioned, while unwanted lineages are de-repressed ectopically. Together, our findings expose NFIB and NFIX as crucial rheostats of tissue homeostasis, functioning to safeguard the SC epigenome from a breach in lineage confinement that otherwise triggers irreversible tissue degeneration.


Subject(s)
Alopecia/pathology , Cell Differentiation , Chromatin/metabolism , Hair Follicle/cytology , NFI Transcription Factors/physiology , Stem Cells/cytology , Alopecia/genetics , Alopecia/metabolism , Animals , Cells, Cultured , Chromatin/genetics , Female , Hair Follicle/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Regeneration , Stem Cells/metabolism
8.
Nat Cell Biol ; 22(7): 779-790, 2020 07.
Article in English | MEDLINE | ID: mdl-32451440

ABSTRACT

Tissue stem cells are the cell of origin for many malignancies. Metabolites regulate the balance between self-renewal and differentiation, but whether endogenous metabolic pathways or nutrient availability predispose stem cells towards transformation remains unknown. Here, we address this question in epidermal stem cells (EpdSCs), which are a cell of origin for squamous cell carcinoma. We find that oncogenic EpdSCs are serine auxotrophs whose growth and self-renewal require abundant exogenous serine. When extracellular serine is limited, EpdSCs activate de novo serine synthesis, which in turn stimulates α-ketoglutarate-dependent dioxygenases that remove the repressive histone modification H3K27me3 and activate differentiation programmes. Accordingly, serine starvation or enforced α-ketoglutarate production antagonizes squamous cell carcinoma growth. Conversely, blocking serine synthesis or repressing α-ketoglutarate-driven demethylation facilitates malignant progression. Together, these findings reveal that extracellular serine is a critical determinant of EpdSC fate and provide insight into how nutrient availability is integrated with stem cell fate decisions during tumour initiation.


Subject(s)
Carcinoma, Squamous Cell/pathology , Cell Transformation, Neoplastic/pathology , Epidermal Cells/pathology , Ketoglutaric Acids/metabolism , Serine/metabolism , Stem Cells/pathology , Animals , Carcinoma, Squamous Cell/metabolism , Cell Differentiation , Cell Transformation, Neoplastic/metabolism , Cells, Cultured , Epidermal Cells/metabolism , Female , Humans , Male , Mice , Stem Cells/metabolism
9.
Proc Natl Acad Sci U S A ; 117(10): 5339-5350, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32094197

ABSTRACT

Aging manifests with architectural alteration and functional decline of multiple organs throughout an organism. In mammals, aged skin is accompanied by a marked reduction in hair cycling and appearance of bald patches, leading researchers to propose that hair follicle stem cells (HFSCs) are either lost, differentiate, or change to an epidermal fate during aging. Here, we employed single-cell RNA-sequencing to interrogate aging-related changes in the HFSCs. Surprisingly, although numbers declined, aging HFSCs were present, maintained their identity, and showed no overt signs of shifting to an epidermal fate. However, they did exhibit prevalent transcriptional changes particularly in extracellular matrix genes, and this was accompanied by profound structural perturbations in the aging SC niche. Moreover, marked age-related changes occurred in many nonepithelial cell types, including resident immune cells, sensory neurons, and arrector pili muscles. Each of these SC niche components has been shown to influence HF regeneration. When we performed skin injuries that are known to mobilize young HFSCs to exit their niche and regenerate HFs, we discovered that aged skin is defective at doing so. Interestingly, however, in transplantation assays in vivo, aged HFSCs regenerated HFs when supported with young dermis, while young HFSCs failed to regenerate HFs when combined with aged dermis. Together, our findings highlight the importance of SC:niche interactions and favor a model where youthfulness of the niche microenvironment plays a dominant role in dictating the properties of its SCs and tissue health and fitness.


Subject(s)
Hair Follicle/physiology , Regeneration/physiology , Skin Aging/physiology , Stem Cell Niche/physiology , Stem Cells/physiology , Animals , Dermis/physiology , Epidermal Cells/physiology , Epidermis/metabolism , Mice , Mice, Inbred C57BL , Muscles/physiology , Re-Epithelialization , Regeneration/genetics , Sensory Receptor Cells/physiology , Skin Aging/genetics , Stem Cell Niche/genetics , Stem Cell Transplantation , Transcriptome , Wound Healing/genetics , Wound Healing/physiology
10.
Science ; 366(6470): 1218-1225, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31672914

ABSTRACT

Tissues rely on stem cells (SCs) for homeostasis and wound repair. SCs reside in specialized microenvironments (niches) whose complexities and roles in orchestrating tissue growth are still unfolding. Here, we identify lymphatic capillaries as critical SC-niche components. In skin, lymphatics form intimate networks around hair follicle (HF) SCs. When HFs regenerate, lymphatic-SC connections become dynamic. Using a mouse model, we unravel a secretome switch in SCs that controls lymphatic behavior. Resting SCs express angiopoietin-like protein 7 (Angptl7), promoting lymphatic drainage. Activated SCs switch to Angptl4, triggering transient lymphatic dissociation and reduced drainage. When lymphatics are perturbed or the secretome switch is disrupted, HFs cycle precociously and tissue regeneration becomes asynchronous. In unearthing lymphatic capillaries as a critical SC-niche element, we have learned how SCs coordinate their activity across a tissue.


Subject(s)
Hair Follicle/physiology , Lymphatic Vessels/physiology , Regeneration , Stem Cell Niche/physiology , Stem Cells/physiology , Angiopoietin-Like Protein 4/metabolism , Angiopoietin-Like Protein 7 , Angiopoietin-like Proteins/metabolism , Animals , Homeodomain Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Stem Cells/metabolism , Tumor Suppressor Proteins/genetics
12.
Elife ; 72018 12 06.
Article in English | MEDLINE | ID: mdl-30520726

ABSTRACT

Adult stem cells are responsible for life-long tissue maintenance. They reside in and interact with specialized tissue microenvironments (niches). Using murine hair follicle as a model, we show that when junctional perturbations in the niche disrupt barrier function, adjacent stem cells dramatically change their transcriptome independent of bacterial invasion and become capable of directly signaling to and recruiting immune cells. Additionally, these stem cells elevate cell cycle transcripts which reduce their quiescence threshold, enabling them to selectively proliferate within this microenvironment of immune distress cues. However, rather than mobilizing to fuel new tissue regeneration, these ectopically proliferative stem cells remain within their niche to contain the breach. Together, our findings expose a potential communication relay system that operates from the niche to the stem cells to the immune system and back. The repurposing of proliferation by these stem cells patch the breached barrier, stoke the immune response and restore niche integrity.


Subject(s)
Cell Proliferation/genetics , Gene Expression Profiling/methods , Hair Follicle/metabolism , Stem Cell Niche , Stem Cells/metabolism , Animals , Cell Communication/genetics , Cell Cycle/genetics , Cells, Cultured , Hair Follicle/cytology , Hair Follicle/ultrastructure , Homeostasis/genetics , Humans , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Electron, Transmission , Stem Cells/cytology , Stem Cells/ultrastructure
13.
Cell Stem Cell ; 23(4): 572-585.e7, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30174297

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) tightly couple maintenance of the bone marrow (BM) reservoir, including undifferentiated long-term repopulating hematopoietic stem cells (LT-HSCs), with intensive daily production of mature leukocytes and blood replenishment. We found two daily peaks of BM HSPC activity that are initiated by onset of light and darkness providing this coupling. Both peaks follow transient elevation of BM norepinephrine and TNF secretion, which temporarily increase HSPC reactive oxygen species (ROS) levels. Light-induced norepinephrine and TNF secretion augments HSPC differentiation and increases vascular permeability to replenish the blood. In contrast, darkness-induced TNF increases melatonin secretion to drive renewal of HSPCs and LT-HSC potential through modulating surface CD150 and c-Kit expression, increasing COX-2/αSMA+ macrophages, diminishing vascular permeability, and reducing HSPC ROS levels. These findings reveal that light- and darkness-induced daily bursts of norepinephrine, TNF, and melatonin within the BM are essential for synchronized mature blood cell production and HSPC pool repopulation.


Subject(s)
Cell Differentiation/radiation effects , Darkness , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/radiation effects , Light , Animals , Cells, Cultured , Epigenesis, Genetic/genetics , Hematopoietic Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Cell Rep ; 23(7): 1962-1976, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29768197

ABSTRACT

Nitric oxide (NO) plays an established role in numerous physiological and pathological processes, but the specific cellular sources of NO in disease pathogenesis remain unclear, preventing the implementation of NO-related therapy. Argininosuccinate lyase (ASL) is the only enzyme able to produce arginine, the substrate for NO generation by nitric oxide synthase (NOS) isoforms. Here, we generated cell-specific conditional ASL knockout mice in combination with genetic and chemical colitis models. We demonstrate that NO derived from enterocytes alleviates colitis by decreasing macrophage infiltration and tissue damage, whereas immune cell-derived NO is associated with macrophage activation, resulting in increased severity of inflammation. We find that induction of endogenous NO production by enterocytes with supplements that upregulate ASL expression and complement its substrates results in improved epithelial integrity and alleviation of colitis and of inflammation-associated colon cancer.


Subject(s)
Colitis/metabolism , Colitis/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Enterocytes/metabolism , Enterocytes/pathology , Inflammation/pathology , Nitric Oxide/metabolism , Animals , Arginine/biosynthesis , Argininosuccinate Lyase/metabolism , Epithelial Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout
15.
Bio Protoc ; 7(4): e2134, 2017 Feb 20.
Article in English | MEDLINE | ID: mdl-34458455

ABSTRACT

Hematopoietic stem cells (HSCs) are defined by their functional ability to self-renew and to differentiate into all blood cell lineages. The majority of HSC reside in specific anatomical locations in the bone marrow (BM) microenvironment, in a quiescent non motile mode. Adhesion interactions between HSCs and their supporting BM microenvironment cells are critical for maintaining stem cell quiescence and protection from DNA damaging agents to prevent hematology failure and death. Multiple signaling proteins play a role in controlling retention and migration of bone marrow HSCs. Adhesion molecules are involved in both processes regulating hematopoiesis and stem- and progenitor-cell BM retention, migration and development. The mechanisms underlying the movement of stem cells from and to the marrow have not been completely elucidated and are still an object of intense study. One important aspect is the modification of expression and affinity of adhesion molecules by stem and progenitor cells which are required both for stem cell retention, migration and development. Adhesion is regulated by expression of the adhesion molecules, their affinity and avidity. Affinity regulation is related to the molecular binding recognition and bond strength. Here, we describe the in vitro FACS assay used in our research to explore the expression, affinity and function of the integrin α4ß1 (also termed VLA-4) for murine bone marrow retained EPCR+ long term repopulation HSC (LT-HSC) (Gur- Cohen et al., 2015 ).

16.
Bio Protoc ; 7(4): e2135, 2017 Feb 20.
Article in English | MEDLINE | ID: mdl-34458456

ABSTRACT

Hematopoietic stem cells (HSCs) are defined by their functional abilities to self-renew and to give rise to all mature blood and immune cell types throughout life. Most HSCs are retained in a non-motile quiescent state within a specialized protective microenvironment in the bone marrow (BM) termed the niche. HSCs are typically distinguished from other adult stem cells by their motility capacity. Movement of HSCs across the physical barrier of the marrow extracellular matrix and blood vessel endothelial cells is facilitated by suppression of adhesion interactions, which are essential to preserve the stem cells retained within their BM niches. Importantly, homing of HSCs to the BM following clinical transplantation is a crucial first step for the repopulation of ablated BM as in the case of curative treatment strategies for hematologic malignancies. The homing process ends with selective access and anchorage of HSCs to their specialized niches within the BM. Adhesion molecules are targets to either enhance homing in cases of stem cell transplantation or reduce BM retention to harvest mobilized HSCs from the blood of matched donors. A major adhesion protein which is functionally expressed on HSCs and is involved in their homing and retention is the integrin alpha4beta1 (Very late antigen-4; VLA4). In this protocol we introduce an adhesion assay optimized for VLA4 expressing murine bone marrow stem cells. This assay quantifies adherent HSCs by flow cytometry with HSC enriching cell surface markers subsequent to the isolation of VLA4 expressing adherent cells.

17.
Cell Res ; 26(10): 1071-1072, 2016 10.
Article in English | MEDLINE | ID: mdl-27481542

ABSTRACT

Generation and growth of the blood vasculature network is a highly synchronized process, requiring coordinated efforts of endothelial cells and pericytes to maintain blood vessel integrity and regeneration. In a recent paper published in Cell Research, Yu et al. identified and characterized bipotent Procr-expressing vascular endothelial stem cells, which give rise to both endothelial cells and pericytes.


Subject(s)
Endothelial Cells , Stem Cells , Endothelial Protein C Receptor , Pericytes
18.
Annu Rev Cell Dev Biol ; 32: 649-675, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27576121

ABSTRACT

In addition to their conventional role as a versatile transport system, blood vessels provide signals controlling organ development, regeneration, and stem cell behavior. In the skeletal system, certain capillaries support perivascular osteoprogenitor cells and thereby control bone formation. Blood vessels are also a critical component of niche microenvironments for hematopoietic stem cells. Here we discuss key pathways and factors controlling endothelial cell behavior in bone, the role of vessels in osteogenesis, and the nature of vascular stem cell niches in bone marrow.


Subject(s)
Blood Vessels/metabolism , Hematopoiesis , Osteogenesis , Signal Transduction , Animals , Bone Marrow/blood supply , Endothelial Cells/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...