Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 122(6): 1792-1800, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29347821

ABSTRACT

The orange carotenoid protein (OCP) mediates nonphotochemical quenching (NPQ) mechanisms in cyanobacteria. A bound ketocarotenoid serves as a sensor of midvisible light intensity and as a quencher of phycocyanobilin excitons in the phycobilisome. The photochemical mechanism that triggers conversion of the protein from a resting, orange state (OCPO) to an active, red state (OCPR) after optical preparation of the S2 state of the carotenoid remains an open question. We report here that the fluorescence spectrum and quantum yield of the bound carotenoids in OCPO report important details of the motions that follow optical preparation of the S2 state. The fluorescence spectra from OCPO preparations containing 3'-hydroxyechinenone (3hECN) or canthaxanthin (CAN) are markedly mirror asymmetric with respect to the absorption line shape and more than an order of magnitude more intense than for carotenoids in solution. Further, 3hECN exhibits a narrower fluorescence line shape and a larger quantum yield than CAN because its excited-state motions are hindered by a hydrogen bonding interaction between the 3'-hydroxyl group on its ß2 ring and Leu37 in the N-terminal domain. These results show that large-amplitude motions of the carotenoid's ß2-cyclohexene ring and of the conjugated polyene backbone initiate photochemistry in OCPO.


Subject(s)
Bacterial Proteins/chemistry , Fluorescence , Quantum Theory , Thermodynamics , Hydrogen Bonding , Molecular Structure , Protein Conformation
3.
J Phys Chem Lett ; 7(18): 3621-6, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27571487

ABSTRACT

Of the carotenoids known in photosynthetic organisms, peridinin exhibits one of the highest quantum efficiencies for excitation energy transfer to chlorophyll (Chl) a acceptors. The mechanism for this enhanced performance involves an order-of-magnitude slowing of the S2 (1(1)Bu(+)) → S1 (2(1)Ag(-)) nonradiative decay pathway compared to carotenoids lacking carbonyl substitution. Using femtosecond transient grating spectroscopy with optical heterodyne detection, we have obtained the first evidence that the nonradiative decay of the S2 state of peridinin is promoted by large-amplitude torsional motions. The decay of an intermediate state termed Sx, which we assign to a twisted form of the S2 state, is substantially slowed by solvent friction in peridinin due to its intramolecular charge transfer (ICT) character.

SELECTION OF CITATIONS
SEARCH DETAIL
...