Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Periodontol ; 94(11): 1285-1294, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37332260

ABSTRACT

BACKGROUND: Our previous study explored the molecular signatures of generalized aggressive periodontitis (GAgP) using gingival tissues through omics-based-whole-genome transcriptomic analysis. This continuation study aimed to investigate the whole protein profiling of these gingival samples through liquid chromatography-mass spectroscopy/mass spectroscopy (LC-MS/MS) analysis and to validate the identified proteins through immunohistochemistry to provide further evidence for the quality of the results. METHODS: In previous study, gene expression patterns were identified in gingival tissues from 23 GAgP and 25 control individuals. In the current study, comparative proteomic analysis was performed on isolated proteins from the same study groups using LC-MS/MS analysis. The data from the transcriptomics study published before and the proteomics data were integrated to reveal any common genes and proteins. Additionally, immunohistochemical analysis was conducted to further investigate the findings. RESULTS: The most upregulated proteins in patients compared to controls were ITGAM, AZU1, MMP9, BPI, UGGG1, MZB1, TRFL, PDIA6, PRDX4, and PLG. The top six pathways associated with these proteins were involved in innate immune system, post-translational protein phosphorylation, interleukin-4 and -13 signaling, toll-like receptors cascades, and extracellular matrix organization. Based on the integration and validation analysis of transcriptomics and proteomics data, as well as immunohistochemical analysis, MZB1 was identified as a shared gene and protein that were upregulated in the patients. CONCLUSIONS: MZB1 is a protein that is involved in the development of B cells and the production of antibodies. Its upregulation in periodontitis suggests that there may be a dysregulation of the immune response in this condition, and MZB1 may be a potent biomarker for periodontitis.


Subject(s)
Aggressive Periodontitis , Proteomics , Humans , Chromatography, Liquid , Tandem Mass Spectrometry , Aggressive Periodontitis/genetics , Aggressive Periodontitis/metabolism , Gingiva/metabolism
2.
Biomed Pharmacother ; 158: 114111, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36502756

ABSTRACT

Alzheimer's disease (AD) is one of the most prevalent diseases that lead to memory deficiencies, severe behavioral abnormalities, and ultimately death. The need for more appropriate treatment of AD continues, and remains a sought-after goal. Previous studies showed palmatine (PAL), an isoquinoline alkaloid, might have the potential for combating AD because of its in vitro and in vivo activities. In this study, we aimed to assess PAL's therapeutic potential and gain insights into the working mechanism on protein level in the AD mouse model brain, for the first time. To this end, PAL was administered to 12-month-old 5xFAD mice at two doses after its successful isolation from the Siberian barberry shrub. PAL (10 mg/kg) showed statistically significant improvement in the memory and learning phase on the Morris water maze test. The PAL's ability to pass through the blood-brain barrier was verified via Multiple Reaction Monitoring (MRM). Label-free proteomics analysis revealed PAL administration led to changes most prominently in the cerebellum, followed by the hippocampus, but none in the cortex. Most of the differentially expressed proteins in PAL compared to the 5xFAD control group (ALZ) were the opposite of those in ALZ in comparison to healthy Alzheimer's littermates (ALM) group. HS105, HS12A, and RL12 were detected as hub proteins in the cerebellum. Collectively, here we present PAL as a potential therapeutic candidate owing to its alleviating effect in 5xFAD mice on not only cognitive impairment but also proteomes in the cerebellum and hippocampus.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Mice, Transgenic , Proteomics , Hippocampus , Disease Models, Animal , Cerebellum/metabolism
3.
Langmuir ; 38(48): 14623-14634, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36416530

ABSTRACT

Fc γ receptors (FcγRs) are one of the structures that can initiate effector function for monoclonal antibodies. FcγRIa has the highest affinity toward IgG1-type monoclonal antibodies among all FcγRs. In this study, a comprehensive characterization was performed for FcγRIa as a potential affinity ligand for IgG1-type monoclonal antibody binding. The binding interactions were assessed with the SPR technique using different immobilization techniques such as EDC-NHS coupling, streptavidin-biotin interaction, and His-tagged FcγRIa capture. The His-tagged FcγRIa capture was the most convenient method based on assay repeatability. Next, a crude IgG1 sample and its fractions with different monomer contents obtained from protein A affinity chromatography were used to evaluate FcγRIa protein in terms of monoclonal antibody binding capacity. The samples were also compared with a protein A-immobilized chip (a frequently used affinity ligand) for IgG1 binding responses. The antibody binding capacity of the protein A-immobilized chip surface was significantly better than that of the FcγRIa-immobilized chip surface due to its 5 Ig binding domains. The antibody binding responses changed similarly with protein A depending on the monomer content of the sample. Finally, a different configuration was used to assess the binding affinity of free FcγRs (FcγRIa, FcγRIIa, and FcγRIIIa) to three different immobilized IgGs by immobilizing protein L to the chip surface. Unlike previous immobilization techniques tested where the FcγRIa was utilized as a ligand, nonimmobilized or free FcγRIa resulted in a significantly higher antibody binding response than free protein A. In this configuration, kinetics data of FcγRI revealed that the association rate (ka 50-80 × 105 M-1 s-1) increased in comparison to His capture method (1.9-2.4 × 105 M-1 s-1). In addition, the dissociation rate (kd 10-5 s-1) seemed slower over the His capture method (10-4 s-1) and provided stability on the chip surface during the dissociation phase. The KD values for FcγRIa were found in the picomolar range (2.1-10.33 pM from steady-state affinity analysis and 37.5-46.2 pM from kinetic analysis) for IgG1-type antibodies. FcγRIa possesses comparable ligand potential as well as protein A. Even though the protein A-immobilized surface bound more antibodies than the FcγRIa-captured surface, FcγRIa presented a significant antibody binding capacity in protein L configuration. The results suggest FcγRIa protein as a potential ligand for site-oriented immobilization of IgG1-type monoclonal antibodies, and it needs further performance investigation on different surfaces and interfaces for applications such as sensing and antibody purification.


Subject(s)
Receptors, IgG , Staphylococcal Protein A , Receptors, IgG/chemistry , Receptors, IgG/metabolism , Staphylococcal Protein A/chemistry , Staphylococcal Protein A/metabolism , Immunoglobulin G/chemistry , Ligands , Kinetics , Antibodies, Monoclonal , Antibodies, Immobilized , Protein Binding
4.
Pharmaceutics ; 14(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36015197

ABSTRACT

Avastin® is a humanized recombinant monoclonal antibody used to treat cancer by targeting VEGF-A to inhibit angiogenesis. SIMAB054, an Avastin® biosimilar candidate developed in this study, showed a different charge variant profile than its innovator. Thus, it is fractionated into acidic, main, and basic isoforms and collected physically by Cation Exchange Chromatography (CEX) for a comprehensive structural and functional analysis. The innovator product, fractionated into the same species and collected by the same method, is used as a reference for comparative analysis. Ultra-Performance Liquid Chromatography (UPLC) ESI-QToF was used to analyze the modifications leading to charge heterogeneities at intact protein and peptide levels. The C-terminal lysine clipping and glycosylation profiles of the samples were monitored by intact mAb analysis. The post-translational modifications, including oxidation, deamidation, and N-terminal pyroglutamic acid formation, were determined by peptide mapping analysis in the selected signal peptides. The relative binding affinities of the fractionated charge isoforms against the antigen, VEGF-A, and the neonatal receptor, FcRn, were revealed by Surface Plasmon Resonance (SPR) studies. The results show that all CEX fractions from the innovator product and the SIMAB054 shared the same structural variants, albeit in different ratios. Common glycoforms and post-translational modifications were the same, but at different percentages for some samples. The dissimilarities were mostly originating from the presence of extra C-term Lysin residues, which are prone to enzymatic degradation in the body, and thus they were previously assessed as clinically irrelevant. Another critical finding was the presence of different glyco proteoforms in different charge species, such as increased galactosylation in the acidic and afucosylation in the basic species. SPR characterization of the isolated charge variants further confirmed that basic species found in the CEX analyses of the biosimilar candidate were also present in the innovator product, although at lower amounts. The charge variants' in vitro antigen- and neonatal receptor-binding activities varied amongst the samples, which could be further investigated in vivo with a larger sample set to reveal the impact on the pharmacokinetics of drug candidates. Minor structural differences may explain antigen-binding differences in the isolated charge variants, which is a key parameter in a comparability exercise. Consequently, such a biosimilar candidate may not comply with high regulatory standards unless the binding differences observed are justified and demonstrated not to have any clinical impact.

5.
Curr Med Chem ; 29(16): 2937-2950, 2022.
Article in English | MEDLINE | ID: mdl-34455957

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is one of the most prevalent diseases with rapidly increasing numbers, but there is still no medication to treat or stop the disease. Previous data on coumarins suggests that scopoletin may have potential benefits in AD. OBJECTIVE: Evaluate the therapeutic potential of the coumarins with natural origin - scopoletin and pteryxin- in a 5xFAD mouse model of AD. METHODS: Both compounds were administered at two doses to 12-month-old mice, which represent severe AD pathology. The effects of coumarins were assessed on cognition in mouse experiments. Changes in the overall brain proteome were evaluated using LCMS/ MS analyses. RESULTS: The Morris water maze test implicated that a higher dose of pteryxin (16 mg/kg) significantly improved learning, and the proteome analysis showed pronounced changes of specific proteins upon pteryxin administration. The amyloid-ß precursor protein, glial fibrillary acid protein, and apolipoprotein E protein which are highly associated with AD, were among the differentially expressed proteins at the higher dose of the pteryxin. CONCLUSION: Overall, pteryxin may be evaluated further as a disease-modifying agent in AD pathology in the late stages of AD.


Subject(s)
Alzheimer Disease , Coumarins , Scopoletin , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Coumarins/therapeutic use , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Proteome , Scopoletin/therapeutic use
6.
Anal Chim Acta ; 1152: 238189, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33648647

ABSTRACT

The similarity between originator and biosimilar monoclonal antibody candidates are rigorously assessed based on primary, secondary, tertiary, quaternary structures, and biological functions. Minor differences in such parameters may alter target-binding, potency, efficacy, or half-life of the molecule. The charge heterogeneity analysis is a prerequisite for all biotherapeutics. Monoclonal antibodies are prone to enzymatic or non-enzymatic structural modifications during or after the production processes, leading to the formation of fragments or aggregates, various glycoforms, oxidized, deamidated, and other degraded residues, reduced Fab region binding activity or altered FcR binding activity. Therefore, the charge variant profiles of the monoclonal antibodies must be regularly and thoroughly evaluated. Comparative structural and functional analysis of physically separated or fractioned charged variants of monoclonal antibodies has gained significant attention in the last few years. The fraction-based charge variant analysis has proved very useful for the biosimilar candidates comprising of unexpected charge isoforms. In this report, the key methods for the physical separation of monoclonal antibody charge variants, structural and functional analyses by liquid chromatography-mass spectrometry, and surface plasmon resonance techniques were reviewed.


Subject(s)
Biosimilar Pharmaceuticals , Antibodies, Monoclonal , Chromatography, Liquid , Mass Spectrometry , Surface Plasmon Resonance
7.
Curr Med Chem ; 28(17): 3449-3473, 2021.
Article in English | MEDLINE | ID: mdl-33200692

ABSTRACT

BACKGROUND: Alzheimer's disease is one of the leading health problems characterized by the accumulation of Aß and hyperphosphorylated tau that account for the senile plaque formations causing extensive cognitive decline. Many of the clinical diagnoses of Alzheimer's disease are made in the late stages, when the pathological changes have already progressed. OBJECTIVE: The objective of this study is to evaluate the promising therapeutic effects of a natural compound, lycoramine, which has been shown to have therapeutic potential in several studies and to understand its mechanism of action on the molecular level via differential protein expression analyses. METHODS: Lycoramine and galantamine, an FDA approved drug used in the treatment of mild to moderate AD, were administered to 12 month-old 5xFAD mice. Effects of the compounds were investigated by Morris water maze, immunohistochemistry and label- free differential protein expression analyses. RESULTS: Here we demonstrated the reversal of cognitive decline via behavioral testing and the clearance of Aß plaques. Proteomics analysis provided in-depth information on the statistically significant protein perturbations in the cortex, hippocampus and cerebellum sections to hypothesize the possible clearance mechanisms of the plaque formation and the molecular mechanism of the reversal of cognitive decline in a transgenic mouse model. Bioinformatics analyses showed altered molecular pathways that can be linked with the reversal of cognitive decline observed after lycoramine administration but not with galantamine. CONCLUSION: Lycoramine shows therapeutic potential to halt and reverse cognitive decline at the late stages of disease progression, and holds great promise for the treatment of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Alzheimer Disease/drug therapy , Amaryllidaceae Alkaloids , Amyloid beta-Peptides , Animals , Disease Models, Animal , Galantamine/therapeutic use , Mice , Mice, Transgenic
8.
Curr Alzheimer Res ; 16(7): 613-621, 2019.
Article in English | MEDLINE | ID: mdl-31362689

ABSTRACT

BACKGROUND: CA1 subregion of the hippocampal formation is one of the primarily affected structures in AD, yet not much is known about proteome alterations in the extracellular milieu of this region. OBJECTIVE: In this study, we aimed to identify the protein expression alterations throughout the pre-pathological, progression and pathological stages of AD mouse model. METHODS: The CA1 region perfusates were collected by in-vivo intracerebral push-pull perfusion from transgenic 5XFAD mice and their non-transgenic littermates at 3, 6 and 12 wereßmonths of age. Morris water maze test and immunohistochemistry staining of A performed to determine the stages of the disease in this mouse model. The protein expression differences were analyzed by label-free shotgun proteomics analysis. RESULTS: A total of 251, 213 and 238 proteins were identified in samples obtained from CA1 regions of mice at 3, 6 and 12 months of age, respectively. Of these, 68, 41 and 33 proteins showed statistical significance. Pathway analysis based on the unique and common proteins within the groups revealed that several pathways are dysregulated during different stages of AD. The alterations in glucose and lipid metabolisms respectively in pre-pathologic and progression stages of the disease, lead to imbalances in ROS production via diminished SOD level and impairment of neuronal integrity. CONCLUSION: We conclude that CA1 region-specific proteomic analysis of hippocampal degeneration may be useful in identifying the earliest as well as progressional changes that are associated with Alzheimer's disease.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , Animals , Disease Models, Animal , Disease Progression , Mice , Mice, Transgenic , Proteomics
9.
Toxicol Appl Pharmacol ; 379: 114686, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31325559

ABSTRACT

Indolamine melatonin structurally resembles non-covalent proteasome inhibitors; however, the role of ubiquitin proteasome system (UPS) in neuronal survival and how melatonin carries out UPS inhibition remain largely unknown. With the use of melatonin treated cells, we evaluated the expression of Nedd4-1, an E3 ligase, how melatonin regulates its activity and its relationship with neuronal survival. Nedd4-1 was upregulated in the hypoxic condition in both control and Nedd4-1 overexpressed cells and melatonin treatment reversed its expression in both normoxic and hypoxic conditions, which was associated with increased cellular survival. Melatonin had no effect on the expression of Nedd4-1 at mRNA level. However, when melatonin was administered along with protein synthesis inhibitor cycloheximide, protein level of Nedd4-1 was further reduced, indicating that melatonin possibly downregulates Nedd4-1 after its synthesis. Notably, co-immunoprecipitation analyses followed by Liquid chromatography-Mass Spectrometry (LC-MS/MS) revealed that melatonin may dissociate ribosomal proteins, such as RS19, RL23A, and nucleophosmin from Nedd4-1, while 40S ribosomal protein S7 and 60S ribosomal protein L35 came into contact with Nedd4-1 upon melatonin treatment. By using IPA analyses, we obtained further data indicated novel target molecules of melatonin in hypoxic conditions, including OTOF, SF3B2, IPO5, ST13, FGFR3, Mx1/Mx2, playing roles in RNA splicing and trafficking, growth factor and interferon signaling. Here, we described a new insight into the role of melatonin in UPS functioning by proposing a molecular mechanism through which melatonin regulates Nedd4-1.


Subject(s)
Cell Survival , Melatonin/physiology , Nedd4 Ubiquitin Protein Ligases/metabolism , Animals , Blotting, Western , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Down-Regulation , Gas Chromatography-Mass Spectrometry , Hypoxia/metabolism , Immunoprecipitation , Melatonin/metabolism , Mice , Mice, Inbred C57BL , Neurons/metabolism , Neurons/physiology , Real-Time Polymerase Chain Reaction
10.
J Periodontol ; 90(6): 663-673, 2019 06.
Article in English | MEDLINE | ID: mdl-30653263

ABSTRACT

BACKGROUND: To elucidate molecular signatures of chronic periodontitis (CP) using gingival tissue samples through omics-based whole-genome transcriptomic and whole protein profiling. METHODS: Gingival tissues from 18 CP and 25 controls were analyzed using gene expression microarrays to identify gene expression patterns and the proteins isolated from these samples were subjected to comparative proteomic analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The data from transcriptomics and proteomics were integrated to reveal common shared genes and proteins. RESULTS: The most upregulated genes in CP compared with controls were found as MZB1, BMS1P20, IGLL1/IGLL5, TNFRSF17, ALDH1A1, KIAA0125, MMP7, PRL, MGC16025, ADAM11, and the most upregulated proteins in CP compared with controls were BPI, ITGAM, CAP37, PCM1, MMP-9, MZB1, UGTT1, PLG, RAB1B, HSP90B1. Functions of the identified genes were involved cell death/survival, DNA replication, recombination/repair, gene expression, organismal development, cell-to-cell signaling/interaction, cellular development, cellular growth/proliferation, cellular assembly/organization, cellular function/maintenance, cellular movement, B-cell development, and identified proteins were involved in protein folding, response to stress, single-organism catabolic process, regulation of peptidase activity, and negative regulation of cell death. The integration and validation analysis of the transcriptomics and proteomics data revealed two common shared genes and proteins, MZB1 and ECH1. CONCLUSION: Integrative data from transcriptomics and proteomics revealed MZB1 as a potent candidate for chronic periodontitis.


Subject(s)
Chronic Periodontitis , Proteomics , Chromatography, Liquid , Gingiva , Humans , Tandem Mass Spectrometry , rab1 GTP-Binding Proteins
11.
J Alzheimers Dis Rep ; 2(1): 79-91, 2018 Apr 12.
Article in English | MEDLINE | ID: mdl-30480251

ABSTRACT

Alzheimer's disease (AD) is a progressive disorder characterized by a variety of molecular pathologies causing cortical dementia with a prominent memory deficit. Formation of the pathology, which begins decades before the diagnosis of the disease, is highly correlated with the clinical symptoms. Several proteomics studies were performed using animal models to monitor the alterations of the brain tissue proteome at different stages of AD. However, proteome changes in the brain regions of newborn transgenic mouse model have not been investigated yet. To this end, we analyzed protein expression alterations in cortex, hippocampus and cerebellum of transgenic mice carrying five familial AD mutations (5XFAD) at neonatal day-1. Our results indicate a remarkable difference in protein expression profile of newborn 5XFAD brain with region specific variations. Additionally, the proteins, which show similar expression alteration pattern in postmortem human AD brains, were determined. Bioinformatics analysis showed that the molecular alterations were mostly related to the cell morphology, cellular assembly and organization, and neuroinflammation. Moreover, morphological analysis revealed that there is an increase in neurite number of 5XFAD mouse neurons in vitro. We suggest that, molecular alterations in the AD brain exist even at birth, and perhaps the disease is silenced until older ages when the brain becomes vulnerable.

12.
J Alzheimers Dis ; 61(4): 1399-1410, 2018.
Article in English | MEDLINE | ID: mdl-29376847

ABSTRACT

In recent years, an increasing number of research papers revealed that the compositional and volumetric alterations in the extracellular matrix are the consequences of aging and may be related to Alzheimer's disease (AD). In this study, we aimed to demonstrate the alterations in hippocampal extracellular fluid proteins in vivo using the 5XFAD mouse model. Samples were obtained from hippocampi of 5XFAD mice (n = 6) and their non-transgenic littermates by intracerebral push-pull perfusion technique at 3 months of age, representing the pre-pathological stage of the AD. Proteins in the hippocampal perfusates were analyzed by Ultra Performance Liquid Chromatography-Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry (UPLC-ESI-qTOF-MS/MS). 178 proteins were identified and 19 proteins of them were found to be statistically significantly altered (p≤0.05, fold change ≥40%, unique peptide count ≥3) in the hippocampal CA1 extracellular fluid of the 5XFAD mouse model. Ingenuity pathway analysis of the protein expression results identified IL6 as an upstream regulator. The upregulation of IL6 was validated by immunohistochemical staining of the hippocampus and cortex of the 5XFAD mice prior to Aß plaque formation. Furthermore, the iron level in the hippocampus was measured by inductively coupled plasma-mass spectrometry as IL6 is mentioned in several studies to take part in iron homeostasis and inflammation and found to be increased in 5XFAD mice hippocampus. Alterations in extracellular matrix proteins in addition to increasing amount of hippocampal IL6 and iron in the early stages of AD may reveal inflammation-mediated iron dyshomeostasis in the early stages of neurodegeneration.


Subject(s)
Alzheimer Disease/metabolism , CA1 Region, Hippocampal/metabolism , Interleukin-6/metabolism , Iron/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , CA1 Region, Hippocampal/pathology , Chromatography, Liquid , Disease Models, Animal , Female , Homeostasis , Mice , Mice, Transgenic , Proteomics , Tandem Mass Spectrometry
13.
Mol Neurobiol ; 55(3): 2565-2576, 2018 03.
Article in English | MEDLINE | ID: mdl-28421530

ABSTRACT

Occurrence of stroke cases displays a time-of-day variation in human. However, the mechanism linking circadian rhythm to the internal response mechanisms against pathophysiological events after ischemic stroke remained largely unknown. To this end, temporal changes in the susceptibility to ischemia/reperfusion (I/R) injury were investigated in mice in which the ischemic stroke induced at four different Zeitgeber time points with 6-h intervals (ZT0, ZT6, ZT12, and ZT18). Besides infarct volume and brain swelling, neuronal survival, apoptosis, ischemia, and circadian rhythm related proteins were examined using immunohistochemistry, Western blot, planar surface immune assay, and liquid chromatography-mass spectrometry tools. Here, we present evidence that midnight (ZT18; 24:00) I/R injury in mice resulted in significantly improved infarct volume, brain swelling, neurological deficit score, neuronal survival, and decreased apoptotic cell death compared with ischemia induced at other time points, which were associated with increased expressions of circadian proteins Bmal1, PerI, and Clock proteins and survival kinases AKT and Erk-1/2. Moreover, ribosomal protein S6, mTOR, and Bad were also significantly increased, while the levels of PRAS40, negative regulator of AKT and mTOR, and phosphorylated p53 were decreased at this time point compared to ZT0 (06:00). Furthermore, detailed proteomic analysis revealed significantly decreased CSKP, HBB-1/2, and HBA levels, while increased GNAZ, NEGR1, IMPCT, and PDE1B at midnight as compared with early morning. Our results indicate that nighttime I/R injury results in less severe neuronal damage, with increased neuronal survival, increased levels of survival kinases and circadian clock proteins, and also alters the circadian-related proteins.


Subject(s)
ARNTL Transcription Factors/biosynthesis , Brain Ischemia/metabolism , Circadian Rhythm/physiology , Neurons/metabolism , Proto-Oncogene Proteins c-akt/biosynthesis , Stroke/metabolism , Animals , Brain Ischemia/pathology , Cell Survival/physiology , Circadian Clocks/physiology , DNA Fragmentation , Male , Mice , Mice, Inbred BALB C , Neurons/pathology , Stroke/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...