Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Imaging ; 24(1): 158, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38914942

ABSTRACT

BACKGROUND: The assessment of in vitro wound healing images is critical for determining the efficacy of the therapy-of-interest that may influence the wound healing process. Existing methods suffer significant limitations, such as user dependency, time-consuming nature, and lack of sensitivity, thus paving the way for automated analysis approaches. METHODS: Hereby, three structurally different variations of U-net architectures based on convolutional neural networks (CNN) were implemented for the segmentation of in vitro wound healing microscopy images. The developed models were fed using two independent datasets after applying a novel augmentation method aimed at the more sensitive analysis of edges after the preprocessing. Then, predicted masks were utilized for the accurate calculation of wound areas. Eventually, the therapy efficacy-indicator wound areas were thoroughly compared with current well-known tools such as ImageJ and TScratch. RESULTS: The average dice similarity coefficient (DSC) scores were obtained as 0.958 ∼ 0.968 for U-net-based deep learning models. The averaged absolute percentage errors (PE) of predicted wound areas to ground truth were 6.41%, 3.70%, and 3.73%, respectively for U-net, U-net++, and Attention U-net, while ImageJ and TScratch had considerable averaged error rates of 22.59% and 33.88%, respectively. CONCLUSIONS: Comparative analyses revealed that the developed models outperformed the conventional approaches in terms of analysis time and segmentation sensitivity. The developed models also hold great promise for the prediction of the in vitro wound area, regardless of the therapy-of-interest, cell line, magnification of the microscope, or other application-dependent parameters.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted , Microscopy , Wound Healing , Microscopy/methods , Humans , Image Processing, Computer-Assisted/methods , Neural Networks, Computer
2.
BMC Biomed Eng ; 6(1): 1, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233957

ABSTRACT

BACKGROUND: Infectious diseases not only cause severe health problems but also burden the healthcare system. Therefore, the effective treatment of those diseases is crucial. Both conventional approaches, such as antimicrobial agents, and novel approaches, like antimicrobial peptides (AMPs), are used to treat infections. However, due to the drawbacks of current approaches, new solutions are still being investigated. One recent approach is the use of AMPs and antimicrobial agents in combination, but determining synergism is with a huge variety of AMPs time-consuming and requires multiple experimental studies. Machine learning (ML) algorithms are widely used to predict biological outcomes, particularly in the field of AMPs, but no previous research reported on predicting the synergistic effects of AMPs and antimicrobial agents. RESULTS: Several supervised ML models were implemented to accurately predict the synergistic effect of AMPs and antimicrobial agents. The results demonstrated that the hyperparameter-optimized Light Gradient Boosted Machine Classifier (oLGBMC) yielded the best test accuracy of 76.92% for predicting the synergistic effect. Besides, the feature importance analysis reveals that the target microbial species, the minimum inhibitory concentrations (MICs) of the AMP and the antimicrobial agents, and the used antimicrobial agent were the most important features for the prediction of synergistic effect, which aligns with recent experimental studies in the literature. CONCLUSION: This study reveals that ML algorithms can predict the synergistic activity of two different antimicrobial agents without the need for complex and time-consuming experimental procedures. The implications support that the ML models may not only reduce the experimental cost but also provide validation of experimental procedures.

3.
Data Brief ; 41: 107921, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35198693

ABSTRACT

This paper presents an electromyography (EMG) signal dataset for use in human-computer interaction studies. The dataset includes 4-channel surface EMG data from 40 participants with an equal gender distribution. The gestures in the data are rest or neutral state, extension of the wrist, flexion of the wrist, ulnar deviation of the wrist, radial deviation of the wrist, grip, abduction of all fingers, adduction of all fingers, supination, and pronation. Data were collected from 4 forearm muscles when simulating 10 unique hand gestures and recorded with the BIOPAC MP36 device using Ag/AgCl surface bipolar electrodes. Each participant's data contains five repetitive cycles of ten hand gestures. A demographic survey was applied to the participants before the signal recording process. This data can be utilized for recognition, classification, and prediction studies in order to develop EMG-based hand movement controller systems. The dataset can also be useful as a reference to create an artificial intelligence model (especially a deep learning model) to detect gesture-related EMG signals. Additionally, it is encouraged to use the proposed dataset for benchmarking current datasets in the literature or for validation of machine learning and deep learning models created with different datasets in accordance with the participant-independent validation strategy.

4.
BMC Med Inform Decis Mak ; 21(1): 170, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34034715

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has become a pandemic since its first appearance in late 2019. Deaths caused by COVID-19 are still increasing day by day and early diagnosis has become crucial. Since current diagnostic methods have many disadvantages, new investigations are needed to improve the performance of diagnosis. METHODS: A novel method is proposed to automatically diagnose COVID-19 by using Electrocardiogram (ECG) data with deep learning for the first time. Moreover, a new and effective method called hexaxial feature mapping is proposed to represent 12-lead ECG to 2D colorful images. Gray-Level Co-Occurrence Matrix (GLCM) method is used to extract features and generate hexaxial mapping images. These generated images are then fed into a new Convolutional Neural Network (CNN) architecture to diagnose COVID-19. RESULTS: Two different classification scenarios are conducted on a publicly available paper-based ECG image dataset to reveal the diagnostic capability and performance of the proposed approach. In the first scenario, ECG data labeled as COVID-19 and No-Findings (normal) are classified to evaluate COVID-19 classification ability. According to results, the proposed approach provides encouraging COVID-19 detection performance with an accuracy of 96.20% and F1-Score of 96.30%. In the second scenario, ECG data labeled as Negative (normal, abnormal, and myocardial infarction) and Positive (COVID-19) are classified to evaluate COVID-19 diagnostic ability. The experimental results demonstrated that the proposed approach provides satisfactory COVID-19 prediction performance with an accuracy of 93.00% and F1-Score of 93.20%. Furthermore, different experimental studies are conducted to evaluate the robustness of the proposed approach. CONCLUSION: Automatic detection of cardiovascular changes caused by COVID-19 can be possible with a deep learning framework through ECG data. This not only proves the presence of cardiovascular changes caused by COVID-19 but also reveals that ECG can potentially be used in the diagnosis of COVID-19. We believe the proposed study may provide a crucial decision-making system for healthcare professionals. SOURCE CODE: All source codes are made publicly available at: https://github.com/mkfzdmr/COVID-19-ECG-Classification.


Subject(s)
COVID-19 , Deep Learning , Electrocardiography , Humans , Neural Networks, Computer , SARS-CoV-2
5.
Phys Med Biol ; 59(19): 5725-39, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25198056

ABSTRACT

A new microwave imaging method that uses microwave contrast agents is presented for the detection and localization of breast tumours. The method is based on the reconstruction of breast surface impedance through a measured scattered field. The surface impedance modelling allows for representing the electrical properties of the breasts in terms of impedance boundary conditions, which enable us to map the inner structure of the breasts into surface impedance functions. Later a simple quantitative method is proposed to screen breasts against malignant tumours where the detection procedure is based on weighted cross correlations among impedance functions. Numerical results demonstrate that the method is capable of detecting small malignancies and provides reasonable localization.


Subject(s)
Breast Neoplasms/diagnosis , Breast/pathology , Contrast Media/pharmacokinetics , Diagnostic Imaging/instrumentation , Early Detection of Cancer/methods , Electric Impedance , Image Enhancement/methods , Microwaves , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...