Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38337270

ABSTRACT

The oxidation of cellulose to dialdehyde cellulose (DAC) is a process that has received increased interest during recent years. Herein, kinetic modeling of the reaction with sodium periodate as an oxidizing agent was performed to quantify rate-limiting steps and overall kinetics of the cellulose oxidation reaction. Considering a pseudo-first-order reaction, a general rate expression was derived to elucidate the impact of pH, periodate concentration, and temperature on the oxidation of cellulose and concurrent formation of cellulose degradation products. Experimental concentration profiles were utilized to determine the rate constants for the formation of DAC (k1), degradation constant of cellulose (k2), and degradation of DAC (k3), confirming that the oxidation follows a pseudo-first-order reaction. Notably, the increase in temperature has a more pronounced effect on k1 compared to the influence of IO4- concentration. In contrast, k2 and k3 display minimal changes in response to IO4- concentration but increase significantly with increasing temperature. The kinetic model developed may help with understanding the rate-limiting steps and overall kinetics of the cellulose oxidation reaction, providing valuable information for optimizing the process toward a faster reaction with higher yield of the target product.

2.
Chemosphere ; 310: 136840, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36257392

ABSTRACT

The current work aims to advance the hydrophilicity, morphology, and antifouling characteristics of polyvinyl chloride (PVC) membranes for oily wastewater separation by incorporating modified bentonite. The surface of bentonite nanoparticles is altered by adopting the "grafting from" method using the surface-initiated atom transfer radical polymerization (SI-ATRP) approach. The PVC-based membrane is first prepared by blending acrylamide grafted bentonite (AAm-g-bentonite). AAm is grafted on bentonite in the presence of 2,2'-Bipyridyl and copper (I) bromide as a catalyst. The modified bentonite nanoparticles are studied using multiple techniques, such as fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), sedimentation tests, field emission scanning electron microscope (FE-SEM), etc. Flat-sheet PVC-based membrane is prepared by blending AAm-g-bentonite using the nonsolvent induced phase separation (NIPS) technique. Different methods, including FE-SEM, FTIR, sedimentation test, contact angle, porosity, antifouling property, and filtration studies of pure and oily water, are used to characterize and determine the performance of mixed-matrix membranes. Membrane performance is improved in the presence of modified bentonite (i.e., AAm-g-bentonite), with the best result achieved at PVC/AAm-g-ben-8 (i.e., 8 wt % of AAm-g-bentonite). Enhanced pure water flux (293.14 Lm-2h-1), permeate flux (123.96 Lm-2h-1), and oil rejection >93.2% are obtained by the reduced contact angle (49.1°) and improved porosity (71.22%).


Subject(s)
Polyvinyl Chloride , Water Purification , Bentonite , Membranes, Artificial , Acrylamide , Water Purification/methods , Oils
3.
Biotechnol Biofuels ; 11: 185, 2018.
Article in English | MEDLINE | ID: mdl-29988523

ABSTRACT

In the wake of the uprising global energy crisis, microalgae have emerged as an alternate feedstock for biofuel production. In addition, microalgae bear immense potential as bio-cell factories in terms of producing key chemicals, recombinant proteins, enzymes, lipid, hydrogen and alcohol. Abstraction of such high-value products (algal biorefinery approach) facilitates to make microalgae-based renewable energy an economically viable option. Synthetic biology is an emerging field that harmoniously blends science and engineering to help design and construct novel biological systems, with an aim to achieve rationally formulated objectives. However, resources and tools used for such nuclear manipulation, construction of synthetic gene network and genome-scale reconstruction of microalgae are limited. Herein, we present recent developments in the upcoming field of microalgae employed as a model system for synthetic biology applications and highlight the importance of genome-scale reconstruction models and kinetic models, to maximize the metabolic output by understanding the intricacies of algal growth. This review also examines the role played by microalgae as biorefineries, microalgal culture conditions and various operating parameters that need to be optimized to yield biofuel that can be economically competitive with fossil fuels.

4.
Bioresour Technol ; 242: 206-217, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28416126

ABSTRACT

Algal model based multi-objective optimization using elitist non-dominated sorting genetic algorithm with inheritance was carried out for batch cultivation of Dunaliella tertiolecta using NPK-fertilizer. Optimization problems involving two- and three-objective functions were solved simultaneously. The objective functions are: maximization of algae-biomass and lipid productivity with minimization of cultivation time and cost. Time variant light intensity and temperature including NPK-fertilizer, NaCl and NaHCO3 loadings are the important decision variables. Algal model involving Monod/Andrews adsorption kinetics and Droop model with internal nutrient cell quota was used for optimization studies. Sets of non-dominated (equally good) Pareto optimal solutions were obtained for the problems studied. It was observed that time variant optimal light intensity and temperature trajectories, including optimum NPK fertilizer, NaCl and NaHCO3 concentration has significant influence to improve biomass and lipid productivity under minimum cultivation time and cost. Proposed optimization studies may be helpful to implement the control strategy in scale-up operation.


Subject(s)
Algorithms , Chlorophyta , Biomass , Bioreactors , Kinetics , Lipids
5.
Biotechnol Lett ; 39(1): 1-11, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27654821

ABSTRACT

Microalgae are currently being considered as a clean, sustainable and renewable energy source. Enzymes that catalyse the metabolic pathways for biofuel production are specific and require strict regulation and co-ordination. Thorough knowledge of these key enzymes along with their regulatory molecules is essential to enable rational metabolic engineering, to drive the metabolic flux towards the desired metabolites of importance. This paper reviews two key enzymes that play their role in production of bio-oil: DGAT (acyl-CoA:diacylglycerol acyltransferase) and PDAT (phospholipid:diacylglycerol acyltransferase). It also deals with the transcription factors that control the enzymes while cell undergoes a metabolic shift under stress. The paper also discusses the association of other enzymes and pathways that provide substrates and precursors for oil accumulation. Finally a futuristic solution has been proposed about a synthetic algal cell platform that would be committed towards biofuel synthesis.


Subject(s)
Chlamydomonas/metabolism , Microalgae/metabolism , Nitrogen/metabolism , Diacylglycerol O-Acyltransferase/metabolism , Metabolic Networks and Pathways/physiology
6.
Bioresour Technol ; 218: 1021-36, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27450983

ABSTRACT

A comprehensive mathematical model involving NPK-10:26:26 fertilizer, NaCl, NaHCO3, light and temperature operating variables for Dunaliella tertiolecta cultivation is formulated to predict microalgae-biomass and lipid productivity. Proposed model includes Monod/Andrews kinetics for the absorption of essential nutrients into algae-biomass and Droop model involving internal nutrient cell quota for microalgae growth, assuming algae-biomass is composed of sugar, functional-pool and neutral-lipid. Biokinetic model parameters are determined by minimizing the residual-sum-of-square-errors between experimental and computed microalgae-biomass and lipid productivity using genetic algorithm. Developed model is validated with the experiments of Dunaliella tertiolecta cultivation using air-agitated sintered-disk chromatographic glass-bubble column and the effects of operating variables on microalgae-biomass and lipid productivity is investigated. Finally, parametric sensitivity analysis is carried out to know the sensitivity of model parameters on the obtained results in the input parameter space. Proposed model may be helpful in scale-up studies and implementation of model-based control strategy in large-scale algal cultivation.


Subject(s)
Algorithms , Chromatography/methods , Fertilizers , Microalgae/growth & development , Models, Theoretical , Biomass
7.
Bioresour Technol ; 194: 117-29, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26188554

ABSTRACT

A culture medium based on NPK-10:26:26 fertilizer was formulated for enhanced biomass and lipid production of Dunaliella tertiolecta by selecting appropriate nutrients and environmental parameters. Five-level-five-factor central composite design assisted response surface methodology was adopted for optimal cultivation of D. tertiolecta and results were compared with simple genetic algorithm (GA). Significant improvement in biomass and lipid production was obtained using newly formulated fertilizer medium over f/2 medium. Following optimal parameters [i.e., NaHCO3, (mM), NPK-10:26:26 (g L(-1)), NaCl (M), light intensity (µmol m(-2) s(-1)) and temperature (°C)] were obtained for maximum biomass (1.98 g L(-1)) and lipid production (0.76 g L(-1)): (42.50, 0.33, 1.09, 125, 25.13) and (38.44, 0.40, 1.25, 125, 24.5), respectively using GA. A multi-objective optimization was solved using non-dominated sorting GA to find best operating variables to maximize biomass and lipid production simultaneously. Effects of operating parameters and their interactions on algae and lipid productivity were successfully revealed.


Subject(s)
Algorithms , Chlorophyta/growth & development , Culture Media , Fertilizers , Lipid Metabolism , Analysis of Variance , Biomass , Chlorophyta/metabolism , Culture Media/chemistry , Light , Lipids/biosynthesis , Models, Theoretical , Nitrogen/metabolism , Phosphorus/metabolism , Potassium/metabolism , Sodium Chloride
SELECTION OF CITATIONS
SEARCH DETAIL
...