Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-474516

ABSTRACT

Public health surveillance, drug treatment development, and optimization of immunological interventions all depend on understanding pathogen adaptation, which differ for specific pathogens. SARS-CoV-2 is an exceptionally successful human pathogen, yet complete understanding of the forces driving its evolution is lacking. Here, we leveraged almost four million SARS-CoV-2 sequences originating mostly from non-vaccinated naive patients to investigate the impact of functional constraints and natural immune pressures on the sequence diversity of the SARS-CoV-2 genome. Overall, we showed that the SARS-CoV-2 genome is under strong and intensifying levels of purifying selection with a minority of sites under diversifying pressure. With a particular focus on the spike protein, we showed that sites under selection were critical for protein stability and virus fitness related to increased infectivity and/or reduced neutralization by convalescent sera. We investigated the genetic diversity of SARS-CoV-2 B and T cell epitopes and determined that the currently known T cell epitope sequences were highly conserved. Outside of the spike protein, we observed that mutations under selection in variants of concern can be associated to beneficial outcomes for the virus. Altogether, the results yielded a comprehensive map of all sites under selection across the entirety of SARS-CoV-2 genome, highlighting targets for future studies to better understand the virus spread, evolution and success.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-434834

ABSTRACT

Monoclonal antibodies against SARS-CoV-2 are a clinically validated therapeutic option against COVID-19. As rapidly emerging virus mutants are becoming the next major concern in the fight against the global pandemic, it is imperative that these therapeutic treatments provide coverage against circulating variants and do not contribute to development of treatment emergent resistance. To this end, we investigated the sequence diversity of the spike protein and monitored emergence of minor virus variants in SARS-COV-2 isolates found in COVID-19 patients or identified from preclinical in vitro and in vivo studies. This study demonstrates that a combination of non-competing antibodies, REGEN-COV, not only provides full coverage against current variants of concern/interest but also protects against emergence of new such variants and their potential seeding into the population in a clinical setting.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-233320

ABSTRACT

An urgent global quest for effective therapies to prevent and treat COVID-19 disease is ongoing. We previously described REGN-COV2, a cocktail of two potent neutralizing antibodies (REGN10987+REGN10933) targeting non-overlapping epitopes on the SARS-CoV-2 spike protein. In this report, we evaluate the in vivo efficacy of this antibody cocktail in both rhesus macaques and golden hamsters and demonstrate that REGN-COV-2 can greatly reduce virus load in lower and upper airway and decrease virus induced pathological sequalae when administered prophylactically or therapeutically. Our results provide evidence of the therapeutic potential of this antibody cocktail.

SELECTION OF CITATIONS
SEARCH DETAIL
...