Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36982718

ABSTRACT

We report a case of an eight-year-old boy with mucopolysaccharidosis (MPS) II with atypical skin lesions of hyperpigmented streaks along Blaschko's lines. This case presented with mild symptoms of MPS such as hepatosplenomegaly, joint stiffness, and quite mild bone deformity, which was the reason for the delay in diagnosis until the age of seven years. However, he showed an intellectual disability that did not meet the diagnostic criteria for an attenuated form of MPS II. Iduronate 2-sulfatase activity was reduced. Clinical exome sequencing of DNA from peripheral blood revealed a novel pathogenic missense variant (NM_000202.8(IDS_v001):c.703C>A, p.(Pro235Thr)) in the IDS gene, which was confirmed in the mother with a heterozygous state. His brownish skin lesions differed from the Mongolian blue spots or "pebbling" of the skin that are observed in MPS II.


Subject(s)
Iduronate Sulfatase , Mucopolysaccharidosis II , Male , Humans , Child , Mucopolysaccharidosis II/diagnosis , Mucopolysaccharidosis II/genetics , Iduronate Sulfatase/genetics , Skin , Mutation, Missense , Splenomegaly
2.
Clin Genet ; 103(6): 625-635, 2023 06.
Article in English | MEDLINE | ID: mdl-36843433

ABSTRACT

Since the first report of SOPH syndrome among the Yakut population in 2010, new clinical data of SOPH-like conditions continue to appear. We expand the phenotypic spectrum of SOPH syndrome and perform a comparative analysis of Yakut SOPH patients' clinical data with SOPH-like conditions reported in the world scientific literature to form a foundation for NBAS pathogenesis discussion. Clinical data from the genetic records of 93 patients with SOPH syndrome and global survey data on patients with pathogenic variants of the C-terminal in the NBAS gene were collected. A detailed phenotype description of patients is presented with a total number of 111 individuals. Underweight below the fifth centile and prone to delayed bone age in Yakut SOPH patients are retrospectively observed. We outline the short stature with optic atrophy as the leading phenotyping trait for C-terminal NBAS patients. The pathophysiology and patients management of SOPH-like conditions are discussed.


Subject(s)
Dwarfism , Optic Atrophy , Humans , Retrospective Studies , Neoplasm Proteins/genetics , Phenotype , Optic Atrophy/genetics , Dwarfism/genetics
3.
Int J Mol Sci ; 23(10)2022 May 23.
Article in English | MEDLINE | ID: mdl-35628659

ABSTRACT

Mucopolysaccharidoses (MPS) are rare lysosomal storage disorders (LSD) characterized by the excessive accumulation of glycosaminoglycans (GAG). Conventional MPS, caused by inborn deficiencies of lysosomal enzymes involved in GAG degradation, display various multisystemic symptoms-including progressive neurological complications, ophthalmological disorders, hearing loss, gastrointestinal and hepatobiliary issues, cardiorespiratory problems, bone and joint abnormalities, dwarfism, and coarse facial features. Mucopolysaccharidosis-Plus Syndrome (MPSPS), an autosomal recessive disease caused by a mutation in the endo-lysosomal tethering protein VPS33A, shows additional renal and hematopoietic abnormalities ("Plus symptoms") uncommon in conventional MPS. Here, we analyze data from biochemical, histological, and physical examinations-particularly of blood counts and kidney function-to further characterize the clinical phenotype of MPSPS. A series of blood tests indicate hematopoietic symptoms including progressive anemia and thrombocytopenia, which correlate with histological observations of hypoplastic bone marrow. High urinary excretion of protein (caused by impairments in renal filtration), hypoalbuminemia, and elevated levels of creatinine, cholesterol, and uric acid indicate renal dysfunction. Histological analyses of MPSPS kidneys similarly suggest the extensive destruction of glomerular structures by foamy podocytes. Height and weight did not significantly deviate from the average, but in some cases, growth began to decline at around six months or one year of age.


Subject(s)
Eye Diseases , Hematologic Diseases , Mucopolysaccharidoses , Glycosaminoglycans/metabolism , Hematologic Diseases/complications , Humans , Mucopolysaccharidoses/genetics , Mutation
4.
Hum Mol Genet ; 26(1): 173-183, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28013294

ABSTRACT

Mucopolysaccharidoses (MPS) are a group of genetic deficiencies of lysosomal enzymes that catabolize glycosaminoglycans (GAG). Here we describe a novel MPS-like disease caused by a specific mutation in the VPS33A gene. We identified several Yakut patients showing typical manifestations of MPS: coarse facial features, skeletal abnormalities, hepatosplenomegaly, respiratory problems, mental retardation, and excess secretion of urinary GAG. However, these patients could not be diagnosed enzymatically as MPS. They showed extremely high levels of plasma heparan sulphate (HS, one of GAG); 60 times the normal reference range and 6 times that of MPS patients. Additionally, most patients developed heart, kidney, and hematopoietic disorders, which are not typical symptoms for conventional MPS, leading to a fatal outcome between 1 and 2-years old. Using whole exome and Sanger sequencing, we identified homozygous c.1492C > T (p.Arg498Trp) mutations in the VPS33A gene of 13 patients. VPS33A is involved in endocytic and autophagic pathways, but the identified mutation did not affect either of these pathways. Lysosomal over-acidification and HS accumulation were detected in patient-derived and VPS33A-depleted cells, suggesting a novel role of this gene in lysosomal functions. We hence propose a new type of MPS that is not caused by an enzymatic deficiency.


Subject(s)
Glycosaminoglycans/metabolism , Mucopolysaccharidoses/genetics , Mucopolysaccharidoses/metabolism , Mutation/genetics , Vesicular Transport Proteins/genetics , Adolescent , Adult , Case-Control Studies , Cells, Cultured , Child , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Male , Pedigree , Severity of Illness Index , Young Adult
5.
Wiad Lek ; 69(2 Pt 2): 295-8, 2016.
Article in English | MEDLINE | ID: mdl-27487552

ABSTRACT

INTRODUCTION: Tyrosinemia type 1 (HT1) (OM IM 276700) is an inborn error of tyrosine catabolism caused be fumarylacetoacetate hedralase deficiency (FAH). In tyrosinemia type I, dietary therapy and nitisinone (Orfandin®), liver transplantation are effective . AIM: We present here the first report on identification of FAH mutation in HT1 Yakut patient from Russia with a novel one. MATERIAL AND METHODS: The material for the clinical study is based on the genetic data of the patient card with tyrosinemia type 1, which is observed in the medical-genetic consultations Republican Hospital №1-National Medical Center of the Republic of Sakha (Yakutia). For molecular genetic analysis has been used venous whole blood, taken with the written consent from the patient, his relatives and 200 healthy Yakuts. All regions of the FAH gene spanning exons were amplified by PCR and mutational analyses was carried out by direct sequencing. Results of sequencing were confirmed by restriction fragment length polymorphism (PCR-RELF) analyses. RESULTS: 1 one-year-old child was identified with a diagnosis hereditary tyrosinemia type Ia, acute form. In exon 13 of the FAH gene a novel mutation c.1090 G>C (GLu364GLn) in the homozygous state was found in patient, and in heterozygous state in both parents. The child is treated Nitisinone therapy. DNA diagnostics of c.1090 G>C mutation frequency in the FAH gene was conducted using PCR and RFLP analysis in 200 unrelated Yakuts. The frequency of heterozygous carrier was 1.0%.


Subject(s)
Hydrolases/genetics , Mutation , Tyrosinemias/genetics , DNA Mutational Analysis , Humans , Infant , Russia
SELECTION OF CITATIONS
SEARCH DETAIL
...