Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
2.
Eye (Lond) ; 38(8): 1556-1561, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38321175

ABSTRACT

OBJECTIVE: The purpose of this study was to evaluate the equivalence of smartphone-based measurements of near visual acuity under different screen brightness conditions with a standard near visual acuity test. METHODS: On a sample of 85 participants, we have evaluated near visual acuity with a smartphone-based version of the Radner reading chart at three distinct screen brightness levels. Results have been compared with those obtained with classical Radner paper charts. RESULTS: We have found that, when a sufficient screen brightness is employed, the smartphone-based version of the Radner reading chart produces results that are in line with the paper Radner charts while low brightness levels lead to a significant underestimation of reading acuities. This result was consistent across different refractive conditions. CONCLUSIONS: In conclusion, we have shown that handheld devices, such as smartphones, can be potentially exploited for remote measurements of near visual acuity provided a correct control of brightness screen is employed.


Subject(s)
Reading , Smartphone , Vision Tests , Visual Acuity , Humans , Visual Acuity/physiology , Female , Male , Adult , Vision Tests/instrumentation , Vision Tests/methods , Young Adult , Middle Aged , Adolescent
3.
J. optom. (Internet) ; 16(3): 189-198, July - September 2023. tab, graf
Article in English | IBECS | ID: ibc-222227

ABSTRACT

Purpose This study aimed to translate the Convergence Insufficiency Symptom Survey (CISS) into the Italian language and assess psychometric properties of the translated questionnaire (CISS_I). Methods The CISS_I was arranged according to guidelines for a comprehensive multistep methodologic process for translating, adapting, and validating psychometric instruments in health care research. The CISS_I questionnaire was administered to 103 volunteers (21.8 ± 2.2 years), students in higher education, at two different times. A complete optometric evaluation was performed including subjective refraction, best corrected visual acuity, near point of convergence, prism fusional ranges to blur, diplopia and recovery, TNO stereo test and prism cover test for measurement of heterophoria. Results The performance of the CISS_I in terms of validity showed some points of weakness. Sensitivity was 42%, specificity was 74%, positive predictive value was 27% and negative predictive value was 85%. The area under the ROC curve was 0.672. On the contrary, the results showed good internal consistency of the CISS_I (Cronbach's alpha - α=0.89) and good test-retest reliability (ICC = 0.92). Rasch analysis showed good model fit (all items, except one, with infit and outfit mean square between 0.7 and 1.3), good measurement precision (person separation = 2.66) and good targeting –0,81 logits but also some evidence of multidimensionality. Conclusions The CISS_I showed some point of weakness in terms of validity but also good psychometric properties and has been shown to be applicable to an Italian speaking population to quantify the visual discomfort associated with near vision in higher education students. The results show that high CISS_I score is not necessarily linked to convergence insufficiency, while low scores can exclude the presence of this anomaly...(AU)


Subject(s)
Humans , Young Adult , Ocular Motility Disorders , Symptom Assessment , Vision, Ocular , Surveys and Questionnaires , Translating
4.
ACS Photonics ; 10(8): 2808-2815, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37602292

ABSTRACT

The quality factor, Q, of photonic resonators permeates most figures of merit in applications that rely on cavity-enhanced light-matter interaction such as all-optical information processing, high-resolution sensing, or ultralow-threshold lasing. As a consequence, large-scale efforts have been devoted to understanding and efficiently computing and optimizing the Q of optical resonators in the design stage. This has generated large know-how on the relation between physical quantities of the cavity, e.g., Q, and controllable parameters, e.g., hole positions, for engineered cavities in gaped photonic crystals. However, such a correspondence is much less intuitive in the case of modes in disordered photonic media, e.g., Anderson-localized modes. Here, we demonstrate that the theoretical framework of quasinormal modes (QNMs), a non-Hermitian perturbation theory for shifting material boundaries, and a finite-element complex eigensolver provide an ideal toolbox for the automated shape optimization of Q of a single photonic mode in both ordered and disordered environments. We benchmark the non-Hermitian perturbation formula and employ it to optimize the Q-factor of a photonic mode relative to the position of vertically etched holes in a dielectric slab for two different settings: first, for the fundamental mode of L3 cavities with various footprints, demonstrating that the approach simultaneously takes in-plane and out-of-plane losses into account and leads to minor modal structure modifications; and second, for an Anderson-localized mode with an initial Q of 200, which evolves into a completely different mode, displaying a threefold reduction in the mode volume, a different overall spatial location, and, notably, a 3 order of magnitude increase in Q.

5.
PLoS One ; 18(4): e0282947, 2023.
Article in English | MEDLINE | ID: mdl-37043468

ABSTRACT

The use of smartphones has seen an extraordinary growth in recent years, thus the understanding of visual habits associated with the use of such devices across the lifespan is becoming important. In the present study we measured viewing distance and character size in a group of non-presbyopes (n = 157) and a group of presbyopes (n = 60) while participants read a simple text message on their smartphone. Results showed that non-presbyopes use shorter viewing distances as compared to presbyopes, a behavior causing a significantly higher accommodative demand. Presbyopes also use larger character sizes and this behavior is more evident whenever difficulties in near vision emerge in the Near Activity Visual Questionnaire (NAVQ, Italian version). Nevertheless, the two groups did not differ in the measurement of angular size subtended by the smallest detail of the letters. Overall, our data reveal that non-presbyopes and presbyopes have different visual habits when using a smartphone. These differences should be considered when determining the best near correction.


Subject(s)
Presbyopia , Smartphone , Humans , Visual Acuity , Longevity , Accommodation, Ocular
6.
Opt Express ; 31(5): 9007-9017, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36860003

ABSTRACT

Dewetted, SiGe nanoparticles have been successfully exploited for light management in the visible and near-infrared, although their scattering properties have been so far only qualitatively studied. Here, we demonstrate that the Mie resonances sustained by a SiGe-based nanoantenna under tilted illumination, can generate radiation patterns in different directions. We introduce a novel dark-field microscopy setup that exploits the movement of the nanoantenna under the objective lens to spectrally isolate Mie resonances contribution to the total scattering cross-section during the same measurement. The knowledge of islands' aspect ratio is then benchmarked by 3D, anisotropic phase-field simulations and contributes to a correct interpretation of the experimental data.

7.
J Optom ; 16(3): 189-198, 2023.
Article in English | MEDLINE | ID: mdl-36207241

ABSTRACT

PURPOSE: This study aimed to translate the Convergence Insufficiency Symptom Survey (CISS) into the Italian language and assess psychometric properties of the translated questionnaire (CISS_I). METHODS: The CISS_I was arranged according to guidelines for a comprehensive multistep methodologic process for translating, adapting, and validating psychometric instruments in health care research. The CISS_I questionnaire was administered to 103 volunteers (21.8 ± 2.2 years), students in higher education, at two different times. A complete optometric evaluation was performed including subjective refraction, best corrected visual acuity, near point of convergence, prism fusional ranges to blur, diplopia and recovery, TNO stereo test and prism cover test for measurement of heterophoria. RESULTS: The performance of the CISS_I in terms of validity showed some points of weakness. Sensitivity was 42%, specificity was 74%, positive predictive value was 27% and negative predictive value was 85%. The area under the ROC curve was 0.672. On the contrary, the results showed good internal consistency of the CISS_I (Cronbach's alpha - α=0.89) and good test-retest reliability (ICC = 0.92). Rasch analysis showed good model fit (all items, except one, with infit and outfit mean square between 0.7 and 1.3), good measurement precision (person separation = 2.66) and good targeting -0,81 logits but also some evidence of multidimensionality. CONCLUSIONS: The CISS_I showed some point of weakness in terms of validity but also good psychometric properties and has been shown to be applicable to an Italian speaking population to quantify the visual discomfort associated with near vision in higher education students. The results show that high CISS_I score is not necessarily linked to convergence insufficiency, while low scores can exclude the presence of this anomaly. The CISS_I can help in interpreting and monitoring convergence insufficiency symptoms in already identified subjects, but it is not suitable for screening a general population of young adults.


Subject(s)
Ocular Motility Disorders , Strabismus , Young Adult , Humans , Psychometrics , Reproducibility of Results , Language , Ocular Motility Disorders/diagnosis , Surveys and Questionnaires
8.
Nano Lett ; 22(22): 9036-9044, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36346871

ABSTRACT

Active modulation of the plasmonic response is at the forefront of today's research in nano-optics. For a fast and reversible modulation, external magnetic fields are among the most promising approaches. However, fundamental limitations of metals hamper the applicability of magnetoplasmonics in real-life active devices. While improved magnetic modulation is achievable using ferromagnetic or ferromagnetic-noble metal hybrid nanostructures, these suffer from severely broadened plasmonic response, ultimately decreasing their performance. Here we propose a paradigm shift in the choice of materials, demonstrating for the first time the outstanding magnetoplasmonic performance of transparent conductive oxide nanocrystals with plasmon resonance in the near-infrared. We report the highest magneto-optical response for a nonmagnetic plasmonic material employing F- and In-codoped CdO nanocrystals, due to the low carrier effective mass and the reduced plasmon line width. The performance of state-of-the-art ferromagnetic nanostructures in magnetoplasmonic refractometric sensing experiments are exceeded, challenging current best-in-class localized plasmon-based approaches.

9.
ACS Appl Nano Mater ; 4(2): 1057-1066, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33778418

ABSTRACT

Plasmon resonance modulation with an external magnetic field (magnetoplasmonics) represents a promising route for the improvement of the sensitivity of plasmon-based refractometric sensing. To this purpose, an accurate material choice is needed to realize hybrid nanostructures with an improved magnetoplasmonic response. In this work, we prepared core@shell nanostructures made of an 8 nm Au core surrounded by an ultrathin iron oxide shell (≤1 nm). The presence of the iron oxide shell was found to significantly enhance the magneto-optical response of the noble metal in the localized surface plasmon region, compared with uncoated Au nanoparticles. With the support of an analytical model, we ascribed the origin of the enhancement to the shell-induced increase in the dielectric permittivity around the Au core. The experiment points out the importance of the spectral position of the plasmonic resonance in determining the magnitude of the magnetoplasmonic response. Moreover, the analytical model proposed here represents a powerful predictive tool for the quantification of the magnetoplasmonic effect based on resonance position engineering, which has significant implications for the design of active magnetoplasmonic devices.

10.
Phys Rev Lett ; 124(12): 123902, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32281836

ABSTRACT

Recent theories proposed a deep revision of the well-known expression for the Purcell factor, with counterintuitive effects, such as complex modal volumes and non-Lorentzian local density of states. We experimentally demonstrate these predictions in tailored coupled cavities on photonic crystal slabs with relatively low optical losses. Near-field hyperspectral imaging of quantum dot photoluminescence is proved to be a direct tool for measuring the line shape of the local density of states. The experimental results clearly evidence non-Lorentzian character, in perfect agreement with numerical and theoretical predictions. Spatial maps with deep subwavelength resolution of the real and imaginary parts of the complex mode volumes are presented. The generality of these results is confirmed by an additional set of far-field and time-resolved experiments in cavities with larger modal volume and higher quality factors.

11.
Opt Express ; 27(26): 37579-37589, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878537

ABSTRACT

We propose a force sensor, with optical detection, based on a reconfigurable multi-cavity photonic molecule distributed over two parallel photonic crystal membranes. The system spectral behaviour is described with an analytical model based on coupled mode theory and validated by finite difference time domain simulations. The deformation of the upper photonic crystal membrane, due to a localized vertical force, is monitored by the relative spectral positions of the photonic molecule resonances. The proposed system can act both as force sensor, with pico-newton sensitivity, able to identify the position where the force is applied, and as torque sensor able to measure the torsion of the membrane along two perpendicular directions.

12.
Sci Rep ; 9(1): 17529, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31772248

ABSTRACT

We demonstrate the growth of low density anti-phase boundaries, crack-free GaAs epilayers, by Molecular Beam Epitaxy on silicon (001) substrates. The method relies on the deposition of thick GaAs on a suspended Ge buffer realized on top of deeply patterned Si substrates by means of a three-temperature procedure for the growth. This approach allows to suppress, at the same time, both threading dislocations and thermal strain in the epilayer and to remove anti-phase boundaries even in absence of substrate tilt. Photoluminescence measurements show the good uniformity and the high optical quality of AlGaAs/GaAs quantum well structures realized on top of such GaAs layer.

13.
Nat Mater ; 18(8): 799-810, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31086322

ABSTRACT

The long dreamed 'quantum internet' would consist of a network of quantum nodes (solid-state or atomic systems) linked by flying qubits, naturally based on photons, travelling over long distances at the speed of light, with negligible decoherence. A key component is a light source, able to provide single or entangled photon pairs. Among the different platforms, semiconductor quantum dots (QDs) are very attractive, as they can be integrated with other photonic and electronic components in miniaturized chips. In the early 1990s two approaches were developed to synthetize self-assembled epitaxial semiconductor QDs, or 'artificial atoms'-namely, the Stranski-Krastanov (SK) and the droplet epitaxy (DE) methods. Because of its robustness and simplicity, the SK method became the workhorse to achieve several breakthroughs in both fundamental and technological areas. The need for specific emission wavelengths or structural and optical properties has nevertheless motivated further research on the DE method and its more recent development, local droplet etching (LDE), as complementary routes to obtain high-quality semiconductor nanostructures. The recent reports on the generation of highly entangled photon pairs, combined with good photon indistinguishability, suggest that DE and LDE QDs may complement (and sometimes even outperform) conventional SK InGaAs QDs as quantum emitters. We present here a critical survey of the state of the art of DE and LDE, highlighting the advantages and weaknesses, the achievements and challenges that are still open, in view of applications in quantum communication and technology.

14.
Adv Mater ; 31(12): e1807274, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30714221

ABSTRACT

Random dielectrics defines a class of non-absorbing materials where the index of refraction is randomly arranged in space. Whenever the transport mean free path is sufficiently small, light can be confined in modes with very small volume. Random photonic modes have been investigated for their basic physical insights, such as Anderson localization, and recently several applications have been envisioned in the field of renewable energies, telecommunications, and quantum electrodynamics. An advantage for optoelectronics and quantum source integration offered by random systems is their high density of photonic modes, which span a large range of spectral resonances and spatial distributions, thus increasing the probability to match randomly distributed emitters. Conversely, the main disadvantage is the lack of deterministic engineering of one or more of the many random photonic modes achieved. This issue is solved by demonstrating the capability to electrically and mechanically control the random modes at telecom wavelengths in a 2D double membrane system. Very large and reversible mode tuning (up to 50 nm), both toward shorter or longer wavelength, is obtained for random modes with modal volumes of the order of few tens of (λ/n)3 .

15.
Sci Rep ; 8(1): 11252, 2018 Jul 26.
Article in English | MEDLINE | ID: mdl-30050165

ABSTRACT

Semiconducting single walled carbon nanotubes (s-SWNT) have an immense potential for the development of active optoelectronic functionalities in ultra-compact hybrid photonic circuits. Specifically, s-SWNT have been identified as a very promising solution to implement light sources in the silicon photonics platform. Still, two major challenges remain to fully exploit the potential of this hybrid technology: the limited interaction between s-SWNTs and Si waveguides and the low quantum efficiency of s-SWNTs emission. Silicon micro-ring resonators have the potential capability to overcome these limitations, by providing enhanced light s-SWNT interaction through resonant light recirculation. Here, we demonstrate that Si ring resonators provide SWNT chirality-wise photoluminescence resonance enhancement, releasing a new degree of freedom to tailor s-SWNT optical properties. Specifically, we show that judicious design of the micro-ring geometry allows selectively promoting the emission enhancement of either (8,6) or (8,7) SWNT chiralities present in a high-purity polymer-sorted s-SWNT solution. In addition, we present an analysis of nanometric-sized silicon-on-insulator waveguides that predicts stronger light s-SWNT interaction for transverse-magnetic (TM) modes than for conventionally used transverse-electric (TE) modes.

16.
Adv Mater ; 30(21): e1705450, 2018 May.
Article in English | MEDLINE | ID: mdl-29611235

ABSTRACT

Many of the most advanced applications of semiconductor quantum dots (QDs) in quantum information technology require a fine control of the QDs' position and confinement potential, which cannot be achieved with conventional growth techniques. Here, a novel and versatile approach for the fabrication of site-controlled QDs is presented. Hydrogen incorporation in GaAsN results in the formation of N-2H and N-2H-H complexes, which neutralize all the effects of N on GaAs, including the N-induced large reduction of the bandgap energy. Starting from a fully hydrogenated GaAs/GaAsN:H/GaAs quantum well, the NH bonds located within the light spot generated by a scanning near-field optical microscope tip are broken, thus obtaining site-controlled GaAsN QDs surrounded by a barrier of GaAsN:H (laterally) and GaAs (above and below). By adjusting the laser power density and exposure time, the optical properties of the QDs can be finely controlled and optimized, tuning the quantum confinement energy over more than 100 meV and resulting in the observation of single-photon emission from both the exciton and biexciton recombinations. This novel fabrication technique reaches a position accuracy <100 nm and it can easily be applied to the realization of more complex nanostructures.

17.
Nat Commun ; 9(1): 396, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29374174

ABSTRACT

The optical behavior of coupled systems, in which the breaking of parity and time-reversal symmetry occurs, is drawing increasing attention to address the physics of the exceptional point singularity, i.e., when the real and imaginary parts of the normal-mode eigenfrequencies coincide. At this stage, fascinating phenomena are predicted, including electromagnetic-induced transparency and phase transitions. To experimentally observe the exceptional points, the near-field coupling to waveguide proposed so far was proved to work only in peculiar cases. Here, we extend the interference detection scheme, which lies at the heart of the Fano lineshape, by introducing generalized Fano lineshapes as a signature of the exceptional point occurrence in resonant-scattering experiments. We investigate photonic molecules and necklace states in disordered media by means of a near-field hyperspectral mapping. Generalized Fano profiles in material science could extend the characterization of composite nanoresonators, semiconductor nanostructures, and plasmonic and metamaterial devices.


Subject(s)
Nanostructures , Optical Phenomena , Photons , Semiconductors , Spectrum Analysis
18.
Opt Lett ; 42(11): 2228-2231, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28569888

ABSTRACT

Polymer-sorted semiconducting single-walled carbon nanotubes (SWNTs) provide room-temperature emission at near-infrared wavelengths, with potential for large volume production of high-quality solutions and wafer-scale deposition. These features make SWNTs a very attractive material for the realization of on-chip light sources. Coupling SWNT into optical microcavities could enhance and guide their emission, while enabling spectral selection by cavity resonance engineering. This could allow the realization of bright, narrowband sources. Here, we report the first demonstration of coupling SWNTs into the resonant modes of Si hollow-core photonic crystal cavities. We exploit the strong evanescent field in these resonators to interact with SWNT emission, coupling it into an integrated access waveguide. Based on this concept, we demonstrate narrowband SWNT emission resonantly coupled into a Si bus waveguide with a full width at half-maximum of 0.34 nm and an off-resonance rejection exceeding 5 dB.

19.
Sci Rep ; 5: 9606, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-26045401

ABSTRACT

Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magnetic intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the "campanile tip", a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. By exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.

20.
Nat Mater ; 13(7): 720-5, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24836733

ABSTRACT

Disordered photonic materials can diffuse and localize light through random multiple scattering, offering opportunities to study mesoscopic phenomena, control light-matter interactions, and provide new strategies for photonic applications. Light transport in such media is governed by photonic modes characterized by resonances with finite spectral width and spatial extent. Considerable steps have been made recently towards control over the transport using wavefront shaping techniques. The selective engineering of individual modes, however, has been addressed only theoretically. Here, we experimentally demonstrate the possibility to engineer the confinement and the mutual interaction of modes in a two-dimensional disordered photonic structure. The strong light confinement is achieved at the fabrication stage by an optimization of the structure, and an accurate and local tuning of the mode resonance frequencies is achieved via post-fabrication processes. To show the versatility of our technique, we selectively control the detuning between overlapping localized modes and observe both frequency crossing and anti-crossing behaviours, thereby paving the way for the creation of open transmission channels in strongly scattering media.

SELECTION OF CITATIONS
SEARCH DETAIL
...