Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurophysiol ; 113(1): 116-31, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25253471

ABSTRACT

Benzodiazepine drugs, through interaction with GABA(Aα1), GABA(Aα2,3), and GABA(Aα5) subunits, modulate cortical network oscillations, as reflected by a complex signature in the EEG power spectrum. Recent drug discovery efforts have developed GABA(Aα2,3)-subunit-selective partial modulators in an effort to dissociate the side effect liabilities from the efficacy imparted by benzodiazepines. Here, we evaluated rat EEG and behavioral end points during dosing of nine chemically distinct compounds that we confirmed statistically to selectively to enhance GABA(Aα2,3)-mediated vs. GABA(Aα1) or GABA(Aα5) currents in voltage clamped oocytes transfected with those GABA(A) subunits. These compounds were shown with in vivo receptor occupancy techniques to competitively displace [(3)H]flumazenil in multiple brain regions following peripheral administration at increasing doses. Over the same dose range, the compounds all produced dose-dependent EEG spectral power increases in the ß- and and γ-bands. Finally, the dose range that increased γ-power coincided with that eliciting punished over unpunished responding in a behavioral conflict model of anxiety, indicative of anxiolysis without sedation. EEG γ-band power increases showed a significant positive correlation to in vitro GABA(Aα2,3) modulatory intrinsic activity across the compound set, further supporting a hypothesis that this EEG signature was linked specifically to pharmacological modulation of GABA(Aα2,3) signaling. These findings encourage further evaluation of this EEG signature as a noninvasive clinical translational biomarker that could ultimately facilitate development of GABA(Aα2,3)-subtype-selective drugs for anxiety and potentially other indications.


Subject(s)
Anti-Anxiety Agents/pharmacology , Beta Rhythm/drug effects , Brain/drug effects , GABA Agents/pharmacology , Gamma Rhythm/drug effects , Animals , Anti-Anxiety Agents/pharmacokinetics , Anxiety/drug therapy , Anxiety/physiopathology , Auditory Perception/drug effects , Auditory Perception/physiology , Beta Rhythm/physiology , Brain/physiopathology , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Conflict, Psychological , Dose-Response Relationship, Drug , Electrodes, Implanted , Electroencephalography , GABA Agents/pharmacokinetics , Gamma Rhythm/physiology , Linear Models , Male , Patch-Clamp Techniques , Rats, Long-Evans , Rats, Sprague-Dawley , Receptors, GABA-A/metabolism
2.
Neuropharmacology ; 61(1-2): 161-71, 2011.
Article in English | MEDLINE | ID: mdl-21497612

ABSTRACT

The alpha-7 neuronal nicotinic receptor is a novel pharmacological target for psychiatric and cognitive disorders. Selective radiotracer tools for pre-clinical receptor occupancy can facilitate the interpretation of the biological actions of small molecules at a target receptor. We discovered a high affinity nicotinic alpha-7 subtype-selective ligand, AZ11637326, with physical-chemical and pharmacokinetic properties suitable for an in vivo radioligand tool. [(3)H]AZ11637326 synthesis by tritiodehalogenation of the corresponding tribromide precursor yielded a high specific activity radiotracer with high affinity alpha-7 receptor binding in the rat hippocampus determined by autoradiography (Kd = 0.2 nM). When [(3)H]AZ11637326 was administered to rats by intravenous bolus, rapid uptake was measured in the brain followed by a 3-4 fold greater specific binding in regions containing the alpha-7 receptor (frontal cortex, hippocampus, hypothalamus and midbrain) when compared to non-target regions (striatum and cerebellum). Systemic administration of the high affinity alpha-7 receptor antagonist, methyllycaconitine (MLA), or pretreatment with alpha-7 selective agonists (AR-R17779, PyrQTC, DBCO-4-POM, and DBCO-3-POM) significantly blocked the alpha-7 specific binding of [(3)H]AZ11637326 in the rat brain. The rank order of ligand ED(50) values for in vivo alpha-7 receptor occupancy in rat hippocampus was: DBCO-4-POM > DBCO-3-POM âˆ¼ MLA > PyrQTC > AR-R17779. The occupancy affinity shift was consistent with in vitro binding affinity in autoradiography. Our studies established the optimal conditions for [(3)H]AZ11637326 in vivo specific binding in the rat brain and support the use of [(3)H]AZ11637326 as a pre-clinical tool for assessment of novel alpha-7 compounds in drug discovery.


Subject(s)
Azabicyclo Compounds/metabolism , Brain/metabolism , Drug Delivery Systems/methods , Receptors, Nicotinic/metabolism , Spiro Compounds/metabolism , Tritium/metabolism , Animals , Azabicyclo Compounds/administration & dosage , Azabicyclo Compounds/chemistry , Brain/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Ligands , Male , Protein Binding/physiology , Rats , Rats, Sprague-Dawley , Spiro Compounds/administration & dosage , Spiro Compounds/chemistry , Tissue Distribution/drug effects , Tissue Distribution/physiology , Tritium/administration & dosage , alpha7 Nicotinic Acetylcholine Receptor
3.
Bioorg Med Chem ; 19(9): 2927-38, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21498079

ABSTRACT

Positive modulators at the benzodiazepine site of α2- and α3-containing GABA(A) receptors are believed to be anxiolytic. Through oocyte voltage clamp studies, we have discovered two series of compounds that are positive modulators at α2-/α3-containing GABA(A) receptors and that show no functional activity at α1-containing GABA(A) receptors. We report studies to improve this functional selectivity and ultimately deliver clinical candidates. The functional SAR of cinnolines and quinolines that are positive allosteric modulators of the α2- and α3-containing GABA(A) receptors, while simultaneously neutral antagonists at α1-containing GABA(A) receptors, is described. Such functionally selective modulators of GABA(A) receptors are expected to be useful in the treatment of anxiety and other psychiatric illnesses.


Subject(s)
Receptors, GABA-A/chemistry , Allosteric Regulation , Anti-Anxiety Agents/chemical synthesis , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/pharmacology , Benzodiazepines/chemistry , GABA-A Receptor Antagonists/chemical synthesis , GABA-A Receptor Antagonists/chemistry , GABA-A Receptor Antagonists/pharmacology , Heterocyclic Compounds, 2-Ring/chemistry , Quinolines/chemistry , Receptors, GABA-A/metabolism , Structure-Activity Relationship
4.
Eur J Pharmacol ; 645(1-3): 63-9, 2010 Oct 25.
Article in English | MEDLINE | ID: mdl-20674564

ABSTRACT

AZ11637326 (5'-(2-fluoro[3,4,5(-3)H3]phenyl)-spiro[1-azabicyclo [2.2.2]octane-3,2'(3'H)-furo[2,3-b]pyridine) is a potent partial agonist at the human alpha7 neuronal nicotinic receptor with sub-nanomolar affinity for the human and rat alpha7 [(125)I]alpha-bungarotoxin binding sites. In a search for novel agonist radioligands and imaging ligands for the alpha7 nicotinic receptor, [(3)H]AZ11637326 was synthesized and its in vitro membrane binding properties were characterized. [(3)H]AZ11637326 bound to halpha7-HEK membranes with high specificity (>95%), high affinity (230 pM) and a B(max) of 460 fmol/mg. The rank order of affinity of nicotinic standards determined with [(3)H]AZ11637326 strongly correlated with those determined using the classical alpha7 antagonist [(125)I]alpha-bungarotoxin, indicating that [(3)H]AZ11637326 bound to halpha7-HEK membranes with an alpha7 nicotinic-like pharmacology. The K(i) values for the standards were on average 2.3-fold lower affinity than determined using the prototypical alpha7 nicotinic antagonist [(125)I]alpha-bungarotoxin. Because [(3)H]AZ11637326 specific binding is rapid and reversible, the K(i) values determined using this ligand are more accurate estimates of affinity than those determined using the kinetically sluggish [(125)I]alpha-bungarotoxin. [(3)H]AZ11637326 also bound to a high affinity (510 pM), nicotine-sensitive site on rat hippocampal membranes with an average B(max) of 55 fmol/mg. With rat hippocampal membranes, the nicotine-sensitive fraction of total binding was sub-optimal for a radioligand (~50%), yet the potencies and rank order of the K(i) values for standards were consistent with an alpha7 nicotinic pharmacology. Overall, these studies indicate that [(3)H]AZ11637326 is a useful new in vitro probe of the alpha7 nicotinic receptor agonist site and support its potential utility for in vivo receptor occupancy studies.


Subject(s)
Azabicyclo Compounds/pharmacology , Nicotinic Agonists/pharmacology , Receptors, Nicotinic/metabolism , Spiro Compounds/pharmacology , Animals , Azabicyclo Compounds/metabolism , Binding Sites , Brain/metabolism , Bridged-Ring Compounds/metabolism , Bridged-Ring Compounds/pharmacology , Bungarotoxins/metabolism , Bungarotoxins/pharmacology , HEK293 Cells , Humans , Ligands , Male , Neurons/metabolism , Nicotinic Agonists/metabolism , Nicotinic Antagonists/metabolism , Nicotinic Antagonists/pharmacology , Radioligand Assay , Rats , Rats, Sprague-Dawley , Spiro Compounds/metabolism , alpha7 Nicotinic Acetylcholine Receptor
5.
Biochem Pharmacol ; 78(7): 880-8, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19615981

ABSTRACT

AZD0328, a novel spirofuropyridine neuronal nicotinic receptor partial agonist, was used to investigate the role of alpha7 neuronal nicotinic receptor (NNR) activation in the modulation of midbrain dopamine neuron function, cortical dopamine release and on two behavioral tasks known to be dependent on optimal levels of cortical dopamine. In vivo recordings from area 10 (ventral tegmental area) in rat brain showed an increased firing of putative dopamine neurons in response to low (0.00138 mg/kg) doses of AZD0328. Bursting patterns of dopamine neuron activity remained largely unchanged by application of AZD0328. In vivo microdialysis in awake rats showed an increase in extracellular prefrontal cortical dopamine in response to low doses of AZD0328. Compound-stimulated dopamine release showed an inverted dose effect relation that was maximal at the lowest dose tested (0.00178 mg/kg). Peak extracellular dopamine levels were reached 2h after dosing with AZD0328. Acquisition of operant responding with delayed reinforcement in rats was dose dependently enhanced by AZD0328 with a plateau effect measured at 0.003 mg/kg. This effect was blocked by pre-treatment of animals with the selective alpha7 antagonist methyllycaconitine. AZD0328 improved novel object recognition in mice over a broad range of doses (0.00178-1.78 mg/kg) and the compound effect was found to be absent in homozygous alpha7 KO animals. Together, these data indicate that selective interaction with alpha7 NNRs by AZD0328 selectively enhances midbrain dopaminergic neuronal activity causing an enhancement of cortical dopamine levels; these neurochemical changes likely, underlie the positive behavioral responses observed in two different animal models. Our results suggest selective alpha7 NNR agonists may have significant therapeutic utility in neurologic and psychiatric indications where cognitive deficits and dopamine neuron dysfunction co-exist.


Subject(s)
Attention/drug effects , Cerebral Cortex/drug effects , Dopamine/metabolism , Furans/pharmacology , Learning/drug effects , Nicotinic Agonists/pharmacology , Quinuclidines/pharmacology , Receptors, Nicotinic/physiology , Action Potentials/drug effects , Animals , Cell Line , Cerebral Cortex/metabolism , Conditioning, Operant/drug effects , Female , Humans , Male , Neurons/physiology , Oocytes/drug effects , Oocytes/physiology , Patch-Clamp Techniques , Radioligand Assay , Rats , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Reinforcement, Psychology , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/physiology , Xenopus laevis , alpha7 Nicotinic Acetylcholine Receptor
6.
Anesthesiology ; 105(3): 521-33, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16931985

ABSTRACT

BACKGROUND: Nondepolarizing neuromuscular blocking agents (NMBAs) are extensively used in the practice of anesthesia and intensive care medicine. Their primary site of action is at the postsynaptic nicotinic acetylcholine receptor (nAChR) in the neuromuscular junction, but their action on neuronal nAChRs have not been fully evaluated. Furthermore, observed adverse effects of nondepolarizing NMBAs might originate from an interaction with neuronal nAChRs. The aim of this study was to examine the effect of clinically used nondepolarizing NMBAs on muscle and neuronal nAChR subtypes. METHODS: Xenopus laevis oocytes were injected with messenger RNA encoding for the subunits included in the human alpha1beta1epsilondelta, alpha3beta2, alpha3beta4, alpha4beta2, and alpha7 nAChR subtypes. The interactions between each of these nAChR subtypes and atracurium, cisatracurium, d-tubocurarine, mivacurium, pancuronium, rocuronium, and vecuronium were studied using an eight-channel two-electrode voltage clamp setup. Responses were measured as peak current and net charge. RESULTS: All nondepolarizing NMBAs inhibited both muscle and neuronal nAChRs. The neuronal nAChRs were reversibly and concentration-dependently inhibited in the low micromolar range. The mechanism (i.e., competitive vs. noncompetitive) of the block at the neuronal nAChRs was dependent both on subtype and the NMBA tested. The authors did not observe activation of the nAChR subtypes by any of the NMBAs tested. CONCLUSIONS: The authors conclude that nondepolarizing NMBAs concentration-dependently inhibit human neuronal nAChRs. The inhibition of the presynaptic alpha3beta2 nAChR subtype expressed at the motor nerve ending provides a possible molecular explanation for the tetanic and train-of-four fade seen during a nondepolarizing neuromuscular block.


Subject(s)
Neuromuscular Nondepolarizing Agents/pharmacology , Neurons/drug effects , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/drug effects , Acetylcholine/pharmacology , Animals , Dose-Response Relationship, Drug , Humans , Receptors, Nicotinic/classification , Xenopus laevis
7.
Anesthesiology ; 104(4): 724-33, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16571968

ABSTRACT

BACKGROUND: Succinylcholine is one of the most widely used muscle relaxants in clinical anesthesia and emergency medicine. Although the clinical advantages and cardiovascular side effects are well known, its mechanism of action within the human nicotinic cholinergic receptor system remains to be understood. The aim of this study was to investigate the effect of succinylcholine on human muscle and neuronal nicotinic acetylcholine receptor (nAChR) subtypes. METHODS: Xenopus laevis oocytes were injected with human messenger RNA for muscle and neuronal nAChR subunits. Receptor activation, desensitization, and inhibition induced by the natural ligand acetylcholine or by succinylcholine was studied using a multichannel two-electrode voltage clamp setup. Responses were measured as peak current and net charge. RESULTS: Succinylcholine concentration-dependently activated the muscle-type nAChR with an EC50 value of 10.8 microm (95% confidence interval, 9.8-11.9 microm), and after the initial activation, succinylcholine desensitized the muscle-type nAChR. Succinylcholine did not activate the neuronal nAChR subtypes alpha3beta2, alpha3beta4, alpha4beta2, or alpha7 at concentrations up to 1 mm and was a poor inhibitor at these receptor subtypes, with IC50 values above 100 microm. CONCLUSION: Succinylcholine activates the muscle-type nAChR followed by desensitization. The observation that succinylcholine does not inhibit the presynaptic alpha3beta2 autoreceptor at clinically relevant concentrations provides a possible mechanistic explanation for the typical lack of tetanic fade in succinylcholine-induced neuromuscular blockade. Finally, cardiovascular side effects (e.g., tachyarrhythmias) of succinylcholine are not mediated via direct activation of the autonomic ganglionic alpha3beta4 subtype because succinylcholine does not activate the neuronal nAChRs.


Subject(s)
Muscles/drug effects , Neuromuscular Depolarizing Agents/pharmacology , Neurons/drug effects , Receptors, Nicotinic/drug effects , Succinylcholine/pharmacology , Acetylcholine/pharmacology , Animals , Dose-Response Relationship, Drug , Humans , Protein Subunits , Succinylcholine/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...