Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Data ; 10(1): 100, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36797273

ABSTRACT

The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring.

3.
Environ Monit Assess ; 194(3): 179, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35157155

ABSTRACT

Water quality monitoring is relevant for protecting the designated, or beneficial uses, of water such as drinking, aquatic life, recreation, irrigation, and food supply that support the economy, human well-being, and aquatic ecosystem health. Managing finite water resources to support these designated uses requires information on water quality so that managers can make sustainable decisions. Chlorophyll-a (chl-a, µg L-1) concentration can serve as a proxy for phytoplankton biomass and may be used as an indicator of increased anthropogenic nutrient stress. Satellite remote sensing may present a complement to in situ measures for assessments of water quality through the retrieval of chl-a with in-water algorithms. Validation of chl-a algorithms across US lakes improves algorithm maturity relevant for monitoring applications. This study compares performance of the Case 2 Regional Coast Colour (C2RCC) chl-a retrieval algorithm, a revised version of the Maximum-Peak Height (MPH(P)) algorithm, and three scenarios merging these two approaches. Satellite data were retrieved from the MEdium Resolution Imaging Spectrometer (MERIS) and the Ocean and Land Colour Instrument (OLCI), while field observations were obtained from 181 lakes matched with U.S. Water Quality Portal chl-a data. The best performance based on mean absolute multiplicative error (MAEmult) was demonstrated by the merged algorithm referred to as C15-M10 (MAEmult = 1.8, biasmult = 0.97, n = 836). In the C15-M10 algorithm, the MPH(P) chl-a value was retained if it was > 10 µg L-1; if the MPH(P) value was ≤ 10 µg L-1, the C2RCC value was selected, as long as that value was < 15 µg L-1. Time-series and lake-wide gradients compared against independent assessments from Lake Champlain and long-term ecological research stations in Wisconsin were used as complementary examples supporting water quality reporting requirements. Trophic state assessments for Wisconsin lakes provided examples in support of inland water quality monitoring applications. This study presents and assesses merged adaptations of chl-a algorithms previously reported independently. Additionally, it contributes to the transition of chl-a algorithm maturity by quantifying error statistics for a number of locations and times.


Subject(s)
Ecosystem , Lakes , Algorithms , Chlorophyll/analysis , Chlorophyll A/analysis , Color , Environmental Monitoring , Humans
4.
Water Res ; 46(4): 993-1004, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22209281

ABSTRACT

Algorithms based on red and near infra-red (NIR) reflectances measured using field spectrometers have been previously shown to yield accurate estimates of chlorophyll-a concentration in turbid productive waters, irrespective of variations in the bio-optical characteristics of water. The objective of this study was to investigate the performance of NIR-red models when applied to multi-temporal airborne reflectance data acquired by the hyperspectral sensor, Airborne Imaging Spectrometer for Applications (AISA), with non-uniform atmospheric effects across the dates of data acquisition. The results demonstrated the capability of the NIR-red models to capture the spatial distribution of chlorophyll-a in surface waters without the need for atmospheric correction. However, the variable atmospheric effects did affect the accuracy of chlorophyll-a retrieval. Two atmospheric correction procedures, namely, Fast Line-of-sight Atmospheric Adjustment of Spectral Hypercubes (FLAASH) and QUick Atmospheric Correction (QUAC), were applied to AISA data and their results were compared. QUAC produced a robust atmospheric correction, which led to NIR-red algorithms that were able to accurately estimate chlorophyll-a concentration, with a root mean square error of 5.54 mg m(-3) for chlorophyll-a concentrations in the range 2.27-81.17 mg m(-3).


Subject(s)
Atmosphere/chemistry , Chlorophyll/analysis , Lakes/chemistry , Nephelometry and Turbidimetry/methods , Spectroscopy, Near-Infrared/methods , Chlorophyll A , Linear Models , Models, Chemical , Nebraska , Time Factors , Water Quality
5.
Opt Express ; 18(23): 24109-25, 2010 Nov 08.
Article in English | MEDLINE | ID: mdl-21164758

ABSTRACT

Remote sensing algorithms that use red and NIR bands for the estimation of chlorophyll-a concentration [Chl] can be more effective in inland and coastal waters than algorithms that use blue and green bands. We tested such two-band and three-band red-NIR algorithms using comprehensive synthetic data sets of reflectance spectra and inherent optical properties related to various water parameters and a very consistent in situ data set from several lakes in Nebraska, USA. The two-band algorithms tested with MERIS bands were Rrs(708)/Rrs(665) and Rrs(753)/Rrs(665). The three-band algorithm with MERIS bands was in the form R3=[Rrs(-1)(665)-Rrs(-1)(708)]×Rrs(753). It is shown that the relationships of both Rrs(708)/Rrs(665) and R3 with [Chl] do not depend much on the absorption by CDOM and non-algal particles, or the backscattering properties of water constituents, and can be defined in terms of water absorption coefficients at the respective bands as well as the phytoplankton specific absorption coefficient at 665 nm. The relationship of the latter with [Chl] was established for [Chl]>1 mg/m3 and then further used to develop algorithms which showed a very good match with field data and should not require regional tuning.


Subject(s)
Algorithms , Chlorophyll/analysis , Seawater/chemistry , Spectroscopy, Near-Infrared/methods , Water/chemistry , Absorption , Chlorophyll A , Computer Simulation , Models, Biological , Nebraska , Phytoplankton/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...