Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 88(4): 638-50, 2008 Sep.
Article in English | MEDLINE | ID: mdl-17512107

ABSTRACT

Recent research into the physical and ecological status of rivers has focused upon rapid field-based assessments of mesoscale habitat features in order to satisfy international regulatory requirements for habitat inventory and appraisal. Despite the low cost and time efficient nature of rapid field surveys, the robustness of such techniques remains uncertain. This paper uses data from over 4,000 surveyed UK river reaches in the UK River Habitat Survey (RHS) database in order to seek linkages between surface flow conditions (flow biotopes), local channel morphology (physical biotopes) and biologically distinct vegetative and minerogenic habitat units (functional habitats). Attempts to identify one-to-one connections between surface flow types, units of channel morphology and functional habitats oversimplify a complex and dynamic hydraulic environment. Instead, a nested hierarchy of reach-scale physical and ecological habitat structures exists, characterised by transferable assemblages of habitat units. Five flow biotopes show strong correlations with functional habitats, and differing combinations of three of these account for over 60% of the distribution for all functional habitats. On this basis, a classification of environments for ecological purposes is proposed. Principal components analysis and agglomerative hierarchical clustering analysis are employed to objectively validate the proposed classification. Flow biotope assemblages may also represent reach-scale channel morphologies (step-pool, riffle-pool and glide-pool), although functional habitats exhibit differing 'preferences' for rougher or more tranquil environments within these. While the data and analysis are specific to the UK RHS, the methods and findings have wider application in situations, where rapid field appraisal methods and associated databases are deployed in water resource inventory and river rehabilitation design.


Subject(s)
Conservation of Natural Resources , Ecology , Rivers , Cluster Analysis
2.
Environ Manage ; 38(4): 580-96, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16933081

ABSTRACT

A conceptual model of the morphological development of the riparian margins of newly cut river channels is presented, suggesting early feedbacks between vegetation growth and bank form. To test the model, observations of long and cross profiles, bank sediment and seed deposition, and bank vegetation development were collected over the first 2 years of river flows through a reach of the River Cole, West Midlands, UK. The newly created channel had a sinuous planform and varying asymmetric trapezoidal cross section in sympathy with the planform. No imposed bedforms or bank reseeding were included in the design. Over the 2 years, development of bedforms was rapid, with bed sediment sorting and bank profile adjustment occurring more steadily and progressively. Six classes of bank profile were identified by the end of the study period, illustrating close associations with sediment aggradation, vegetation colonization, and growth patterns. Vegetation colonization of the banks was seeded predominantly from local sources during the summer and from hydrochory (transport by the river) during the winter. Colonizing vegetation on the riverbanks appeared to act as a significant propagule source by the second summer and as an increasingly important roughness element, trapping both propagules and sediment, within the second year and providing early feedback into bank evolution. As a result, the time required for riparian margin development in the conceptual model was found to be considerably longer than observed in the study river. In addition, the role of surface wash/bank failure in modifying the bank profile and transporting seeds onto the upper bank face during the first year of bank development was found to be important in initiating rapid bank vegetation colonization and surface stabilization. This set of processes had not been incorporated in the initial conceptual model. In relation to channel restoration, this research illustrates that in small temperate rivers of modest energy the provision of an initial, sinuous corridor is sufficient to induce rapid development of fluvial features and vegetation cover without the need to construct bed forms or to seed the banks.


Subject(s)
Conservation of Natural Resources , Models, Theoretical , Trees , Water Movements , Ecosystem , Geologic Sediments , Plant Development , Rivers , Seeds , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...