Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(12): e2209883120, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36913572

ABSTRACT

Arctic rivers provide an integrated signature of the changing landscape and transmit signals of change to the ocean. Here, we use a decade of particulate organic matter (POM) compositional data to deconvolute multiple allochthonous and autochthonous pan-Arctic and watershed-specific sources. Constraints from carbon-to-nitrogen ratios (C:N), δ13C, and Δ14C signatures reveal a large, hitherto overlooked contribution from aquatic biomass. Separation in Δ14C age is enhanced by splitting soil sources into shallow and deep pools (mean ± SD: -228 ± 211 vs. -492 ± 173‰) rather than traditional active layer and permafrost pools (-300 ± 236 vs. -441 ± 215‰) that do not represent permafrost-free Arctic regions. We estimate that 39 to 60% (5 to 95% credible interval) of the annual pan-Arctic POM flux (averaging 4,391 Gg/y particulate organic carbon from 2012 to 2019) comes from aquatic biomass. The remainder is sourced from yedoma, deep soils, shallow soils, petrogenic inputs, and fresh terrestrial production. Climate change-induced warming and increasing CO2 concentrations may enhance both soil destabilization and Arctic river aquatic biomass production, increasing fluxes of POM to the ocean. Younger, autochthonous, and older soil-derived POM likely have different destinies (preferential microbial uptake and processing vs. significant sediment burial, respectively). A small (~7%) increase in aquatic biomass POM flux with warming would be equivalent to a ~30% increase in deep soil POM flux. There is a clear need to better quantify how the balance of endmember fluxes may shift with different ramifications for different endmembers and how this will impact the Arctic system.


Subject(s)
Particulate Matter , Rivers , Arctic Regions , Biomass , Carbon , Soil
2.
Proc Natl Acad Sci U S A ; 119(14): e2119857119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35344436

ABSTRACT

SignificanceRussian rivers are the predominant source of riverine mercury to the Arctic Ocean, where methylmercury biomagnifies to high levels in food webs. Pollution controls are thought to have decreased late-20th-century mercury loading to Arctic watersheds, but there are no published long-term observations on mercury in Russian rivers. Here, we present a unique hydrochemistry dataset to determine trends in Russian river particulate mercury concentrations and fluxes in recent decades. Using hydrologic and mercury deposition modeling together with multivariate time series analysis, we determine that 70 to 90% declines in particulate mercury fluxes were driven by pollution reductions and sedimentation in reservoirs. Results suggest that Russian rivers likely dominated over all other sources of mercury to the Arctic Ocean until recently.

3.
Environ Sci Technol ; 54(7): 4140-4148, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32122125

ABSTRACT

Land-ocean linkages are strong across the circumpolar north, where the Arctic Ocean accounts for 1% of the global ocean volume and receives more than 10% of the global river discharge. Yet estimates of Arctic riverine mercury (Hg) export constrained from direct Hg measurements remain sparse. Here, we report results from a coordinated, year-round sampling program that focused on the six major Arctic rivers to establish a contemporary (2012-2017) benchmark of riverine Hg export. We determine that the six major Arctic rivers exported an average of 20 000 kg y-1 of total Hg (THg, all forms of Hg). Upscaled to the pan-Arctic, we estimate THg flux of 37 000 kg y-1. More than 90% of THg flux occurred during peak river discharge in spring and summer. Normalizing fluxes to watershed area (yield) reveals higher THg yields in regions where greater denudation likely enhances Hg mobilization. River discharge, suspended sediment, and dissolved organic carbon predicted THg concentration with moderate fidelity, while suspended sediment and water yields predicted THg yield with high fidelity. These findings establish a benchmark in the face of rapid Arctic warming and an intensifying hydrologic cycle, which will likely accelerate Hg cycling in tandem with changing inputs from thawing permafrost and industrial activity.


Subject(s)
Mercury , Permafrost , Water Pollutants, Chemical , Arctic Regions , Environmental Monitoring , Rivers
4.
Environ Sci Technol ; 52(15): 8302-8308, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29947507

ABSTRACT

Riverine carbonate alkalinity (HCO3- and CO32-) sourced from chemical weathering represents a significant sink for atmospheric CO2. Alkalinity flux from Arctic rivers is partly determined by precipitation, permafrost extent, groundwater flow paths, and surface vegetation, all of which are changing under a warming climate. Here we show that over the past three and half decades, the export of alkalinity from the Yenisei and Ob' Rivers increased from 225 to 642 Geq yr-1 (+185%) and from 201 to 470 Geq yr-1 (+134%); an average rate of 11.90 and 7.28 Geq yr-1, respectively. These increases may have resulted from a suite of changes related to climate change and anthropogenic activity, including higher temperatures, increased precipitation, permafrost thaw, changes to hydrologic flow paths, shifts in vegetation, and decreased acid deposition. Regardless of the direct causes, these trends have broad implications for the rate of carbon sequestration on land and delivery of buffering capacity to freshwater ecosystems and the Arctic Ocean.


Subject(s)
Permafrost , Rivers , Arctic Regions , Ecosystem , Russia
5.
Environ Sci Technol ; 51(22): 13436-13442, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29083154

ABSTRACT

Current understanding of mercury (Hg) dynamics in the Arctic is hampered by a lack of data in the Russian Arctic region, which comprises about half of the entire Arctic watershed. This study quantified temporal and longitudinal trends in total mercury (THg) concentrations in burbot (Lota lota) in eight rivers of the Russian Arctic between 1980 and 2001, encompassing an expanse of 118 degrees of longitude. Burbot THg concentrations declined by an average of 2.6% annually across all eight rivers during the study period, decreasing by 39% from 0.171 µg g-1 wet weight (w.w.) in 1980 to 0.104 µg g-1 w.w. in 2001. THg concentrations in burbot also declined by an average of 1.8% per 10° of longitude from west to east across the study area between 1988 and 2001. These results, in combination with those of previous studies, suggest that Hg trends in Arctic freshwater fishes before 2001 were spatially and temporally heterogeneous, as those in the North American Arctic were mostly increasing while those in the Russian Arctic were mostly decreasing. It is suggested that Hg trends in Arctic animals may be influenced by both depositional and postdepositional processes.


Subject(s)
Environmental Monitoring , Mercury , Animals , Arctic Regions , Fishes , Russia , Water Pollutants, Chemical
6.
Environ Sci Technol ; 48(1): 747-52, 2014.
Article in English | MEDLINE | ID: mdl-24358967

ABSTRACT

Mercury (Hg) dynamics in the Arctic is receiving increasing attention, but further understanding is limited by a lack of studies in Russia, which encompasses the majority of the pan-Arctic watershed. This study reports Hg concentrations and trends in burbot (Lota lota) from the Lena and Mezen Rivers in the Russian Arctic, and assesses the extent to which they differ from those found in burbot in arctic rivers elsewhere. Mercury concentrations in burbot in the Lena and Mezen Rivers were found to be generally lower than in 23 other locations, most of which are in the Mackenzie River Basin (Canada). Mercury concentrations in burbot in the Lena and Mezen Rivers also were found to have been declining at an annual rate of 2.3% while they have been increasing in the Mackenzie River Basin at annual rates between 2.2 and 5.1% during roughly the same time period. These contrasting patterns in Hg in burbot across the pan-Arctic may be explained by geographic heterogeneity in controlling processes, including riverine particulate material loads, historically changing atmospheric inputs, postdepositional processes, and climate change impacts.


Subject(s)
Gadiformes , Mercury/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Animals , Arctic Regions , Environmental Monitoring , Russia
7.
Environ Monit Assess ; 181(1-4): 539-53, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21264683

ABSTRACT

The Norilsk industrial ore smelting complex (Taymyr Peninsula, Russian Federation) has significantly impacted many components of local terrestrial and aquatic environments. Whether it has had a major impact on the wider Russian Arctic remains controversial as studies are scarce. From 1986 to 2004, data on heavy metal (Cu, Ni, Zn, Hg, Cd and Hg) concentrations in fish (burbot), moss, lichens, periphyton, hydric soils and snow in and around Norilsk and the most northern parts of the Taymyr Peninsula were analysed. Very high concentrations of Cu (203 µg L⁻¹ ± 51 µg L⁻¹) and Ni (113 µg L⁻¹ ± 15 µg L⁻¹) were found in the water of the Schuchya River close to Norilsk. Heavy metal concentrations in burbot liver were highest in Lake Pyasino near Norilsk compared to other study regions that were >100 km distant. From 1989-1996, Cu (121 µg L⁻¹ ± 39 µg L⁻¹ SD), Zn (150 µg L⁻¹) ± 70 µg L⁻¹) and Ni (149 µg L⁻¹ ± 72 µg L⁻¹) snow concentrations were greatest in Norilsk, but were low elsewhere. By 2004, these concentrations had dropped significantly, especially for Cu-74 µg L⁻¹ (±18.7 µg L⁻¹ SD), Zn-81.7 µg L⁻¹ (± 31.3 µg L⁻¹ SD) and Ni-80 µg L⁻¹(±18.0 µg L⁻¹ SD). Norilsk and its surroundings are subject to heavy pollution from the Norilsk metallurgical industry but these are absent from the greater Arctic region due to the prevailing winds and the Byrranga Mountains. Pollution abatement measures have been made so further investigations are necessary in order to assess their efficiency.


Subject(s)
Environmental Monitoring , Metals, Heavy/analysis , Soil Pollutants/analysis , Sulfur/analysis , Water Pollutants, Chemical/analysis , Ecosystem , Environmental Pollution/statistics & numerical data , Fresh Water/chemistry , Industry , Russia , Snow/chemistry , Soil/chemistry , Sphagnopsida/chemistry
8.
Environ Pollut ; 158(2): 624-30, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19767133

ABSTRACT

Concentrations of dissolved and particulate Cd, Cu, Pb and Zn were determined in samples collected in summer 1998 from the lower reaches of six major Eurasian arctic rivers: the Onega, Severnaya Dvina, Mezen, Pechora, Ob and Yenisey. These data comprise some of the earliest measurements of trace metals in Eurasian arctic rivers above the estuaries using recognized clean techniques. Significant (alpha = 0.05) differences were observed among mean concentrations of particulate metals in the individual rivers (F < or = 0.006), with highest levels overall observed in the Severnaya Dvina and Yenisey. No significant differences were observed among mean concentrations of dissolved metals in the individual rivers (F = 0.10-0.84). Contributions from anthropogenic sources are suggested by comparison of trace metal ratios in the samples to crustal abundances. These results establish a baseline for assessing future responses of Eurasian arctic river systems to climate-related environmental changes and shifting patterns of pollutant discharge.


Subject(s)
Environmental Monitoring/methods , Environmental Monitoring/statistics & numerical data , Metals, Heavy/analysis , Rivers/chemistry , Arctic Regions , Russia , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL
...