Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Inflammation ; 46(1): 217-233, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35941320

ABSTRACT

High fructose flux enhances hepatocellular triglyceride accumulation (hepatic steatosis), which is a prime trigger in the emergence of hepatic ailments. Nevertheless, the pathophysiology underlying the process is not completely understood. Emerging evidences have revealed the inputs from multiple cues including inflammation, oxidative stress, and endoplasmic reticulum (ER) stress in the development of hepatic steatosis. Here, we substantiated the role of NLRP3 inflammasome and its convergence with oxidative and ER stress leading to hepatic steatosis under high fructose diet feeding. Male SD rats were fed on 60% high fructose diet (HFrD) for 10 weeks and treated with antioxidant quercetin or NLRP3 inflammasome inhibitor glyburide during the last 6 weeks, followed by metabolic characterization and analysis of hepatic parameters. HFrD-induced hepatic steatosis was associated with the activation of NLRP3 inflammasome, pro-inflammatory response, oxidative, and ER stress in liver. Treatment with quercetin abrogated HFrD-induced oxidative stress, along with attenuation of NLRP3 activation in the liver. On the other hand, inhibition of NLRP3 signaling by glyburide suppressed HFrD-induced oxidative and ER stress. Both glyburide or quercetin treatment significantly attenuated hepatic steatosis, associated with mitigated expression of the lipogenic markers in liver. Our findings verified the association of NLRP3 inflammasome with oxidative and ER stress in fructose-induced lipogenic response and indicate that in addition to be a target of oxidative/ER stress, NLRP3 can act as a trigger for oxidative/ER stress to activate a vicious cycle where these cues act in a complex manner to propagate inflammatory response, leading to hepatic steatosis.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Male , Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Quercetin/pharmacology , Quercetin/therapeutic use , Fructose/adverse effects , Fructose/metabolism , Glyburide/metabolism , Rats, Sprague-Dawley , Liver/metabolism , Oxidative Stress , Endoplasmic Reticulum Stress
2.
Eur J Pharmacol ; 935: 175322, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36228743

ABSTRACT

Insulin resistance is a feature of type 2 diabetes mellitus (T2D), and is strongly interconnected with non-alcoholic fatty liver disease (NAFLD). Peroxisome-proliferator activated receptor gamma (PPARγ) and peroxisome-proliferator activated receptor alpha (PPARα) are master regulators of insulin sensitivity and lipid metabolism, respectively. Thiazolidinediones (TZDs) such as pioglitazone, which target PPARα/γ, are highly effective at treating insulin resistance and NAFLD, but their clinical utility has been restricted by side effects such as weight gain, adipocyte hypertrophy and fluid retention. Therefore, there is urgent need for new safer and effective drugs. Thus, we aimed to develop novel dual PPARα/γ agonists to avoid their known side effects while preserving their overall therapeutic effects. Here, we show that our novel agonists G4 and G5 strongly stimulate glucose transporter 4 (GLUT4) translocation to the cell membrane in skeletal muscle cells, and manifest weaker lipogenic effect in adipocytes. Moreover, G4 and G5 improve systemic glucose metabolism, hyperinsulinemia, hyperlipidemia, and markers of liver injury in high fructose diet-induced insulin resistant rats. Mechanistic studies revealed that G4 and G5 enhance GLUT4, and AMPK in skeletal muscle and protect against liver steatosis by upregulating PPARα and improve whole-body insulin sensitivity by increasing PPARγ. Despite this increase in PPARγ activity, G4 and G5 inhibit the unwanted side effects such as weight gain due to adiposity, hypertrophy of adipocytes, and fluid retention unlike TZDs. These findings identify G4 and G5 as promising dual PPARα/γ agonists for the treatment of NAFLD and insulin resistance with improved safety.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Thiazolidinediones , Rats , Animals , PPAR alpha/metabolism , PPAR gamma/metabolism , Diabetes Mellitus, Type 2/drug therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Thiazolidinediones/pharmacology , Weight Gain , Hypertrophy/drug therapy
3.
J Nutr Biochem ; 107: 109080, 2022 09.
Article in English | MEDLINE | ID: mdl-35660098

ABSTRACT

Adipose tissue plays a crucial role in energy intake and regulation of metabolic homeostasis. Fructose consumption implicates in development and progression of metabolic dysfunctions. Fructose is a lipogenic sugar known to induce inflammatory response. However, the role of specific inflammatory signal such as nucleotide-binding and oligomerization domain-like receptor, leucine-rich repeat and pyrin domain containing protein 3 (NLRP3) in fructose-induced inflammatory response and its relevance to lipogenesis in adipose tissue are elusive. We assessed NLRP3 activation and its significance in inflammatory response and lipogenesis in epididymal adipose tissue of 60% fructose diet (HFrD)-fed rats. The long-term consumption of HFrD led to impairment of glucose metabolism, development of visceral adiposity, insulin resistance, and elevation of serum triglycerides level, accompanied by activation of NLRP3 in adipose tissue. NLRP3 inflammasome activation in adipose tissue was associated with up-regulated expression of Nlrp3, Asc, and Caspase-1, and raised caspase-1 activity, which resulted in increased expression of IL-1ß and IL-18 and secretion of IL-1ß. Moreover, lipid accumulation and expression of transcription factors exacerbating accumulation of lipids were augmented in adipose tissue of HFrD-fed rats. Treatment with glyburide, quercetin or allopurinol corrected HFrD-induced dyslipidemia or hyperuricemia, and blocked NLRP3 activation, leading to mitigated inflammatory signaling and lipid accumulation in adipose tissue, improved glucose tolerance and insulin sensitivity in HFrD-fed rats. These data suggest the role of NLRP3 inflammasome to establish linkage among inflammation, lipid accumulation and insulin resistance in adipose tissue, and targeting NLRP3 inflammasome may be a plausible approach for prevention and management for fructose-induced metabolic impairments.


Subject(s)
Inflammasomes , Insulin Resistance , Adipose Tissue/metabolism , Animals , Caspases/metabolism , Fructose/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Insulin Resistance/physiology , Lipids , Lipogenesis , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats
4.
Pharmacology ; 107(1-2): 90-101, 2022.
Article in English | MEDLINE | ID: mdl-34736259

ABSTRACT

INTRODUCTION: Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are highly effective in treating insulin resistance. However, associated side effects such as weight gain due to increase in adipogenesis and lipogenesis hinder their clinical use. The aim of the study was to design and synthesize novel partial PPARγ agonists with weaker lipogenic effect in adipocytes and enhanced glucose transporter 4 (GLUT4) translocation stimulatory effect in skeletal muscle cells. METHODS: Novel partial PPARγ agonists (GS1, GS2, and GS3) were designed and screened to predict their binding interactions with PPARγ by molecular docking. The stability of the docked ligand-PPARγ complex was studied by molecular dynamics (MD) simulation. The cytotoxicity of synthesized compounds was tested in 3T3-L1 adipocytes and L6 myoblasts by MTT assay. The lipogenic effect was investigated in 3T3-L1 adipocytes using oil red O staining and GLUT4 translocation stimulatory effect in L6-GLUT4myc myotubes by an antibody-coupled colorimetric assay. RESULTS: The molecular docking showed the binding interactions between designed agonists and PPARγ. MD simulation demonstrated good stability between the GS2-PPARγ complex. GS2 and GS3 did not show any significant effect on cell viability up to 80 or 100 µM concentration. Pioglitazone treatment significantly increased intracellular lipid accumulation in adipocytes compared to control. However, this effect was significantly less in GS2- and GS3-treated conditions compared to pioglitazone at 10 µM concentration, indicating weaker lipogenic effect. Furthermore, GS2 significantly stimulated GLUT4 translocation to the plasma membrane in a dose-dependent manner via the AMPK-dependent signaling pathway in skeletal muscle cells. CONCLUSION: GS2 may be a promising therapeutic agent for the treatment of insulin resistance and type 2 diabetes mellitus without adiposity.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adipocytes/drug effects , Glucose Transporter Type 4/metabolism , Hypoglycemic Agents/pharmacology , Lipogenesis/drug effects , Muscle, Skeletal/drug effects , PPAR gamma/agonists , Adipocytes/metabolism , Animals , Cell Line , Cell Survival/drug effects , Hypoglycemic Agents/chemistry , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , PPAR gamma/chemistry , Pioglitazone/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Transport , Rats , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL