Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiome ; 5(1): 161, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29262868

ABSTRACT

BACKGROUND: The human gut microbiome has been linked to numerous components of health and disease. However, approximately 25% of the bacterial species in the gut remain uncultured, which limits our ability to properly understand, and exploit, the human microbiome. Previously, we found that growing environmental bacteria in situ in a diffusion chamber enables growth of uncultured species, suggesting the existence of growth factors in the natural environment not found in traditional cultivation media. One source of growth factors proved to be neighboring bacteria, and by using co-culture, we isolated previously uncultured organisms from the marine environment and identified siderophores as a major class of bacterial growth factors. Here, we employ similar co-culture techniques to grow bacteria from the human gut microbiome and identify novel growth factors. RESULTS: By testing dependence of slow-growing colonies on faster-growing neighboring bacteria in a co-culture assay, eight taxonomically diverse pairs of bacteria were identified, in which an "induced" isolate formed a gradient of growth around a cultivatable "helper." This set included two novel species Faecalibacterium sp. KLE1255-belonging to the anti-inflammatory Faecalibacterium genus-and Sutterella sp. KLE1607. While multiple helper strains were identified, Escherichia coli was also capable of promoting growth of all induced isolates. Screening a knockout library of E. coli showed that a menaquinone biosynthesis pathway was required for growth induction of Faecalibacterium sp. KLE1255 and other induced isolates. Purified menaquinones induced growth of 7/8 of the isolated strains, quinone specificity profiles for individual bacteria were identified, and genome analysis suggests an incomplete menaquinone biosynthetic capability yet the presence of anaerobic terminal reductases in the induced strains, indicating an ability to respire anaerobically. CONCLUSIONS: Our data show that menaquinones are a major class of growth factors for bacteria from the human gut microbiome. These organisms are taxonomically diverse, including members of the genus Faecalibacterium, Bacteroides, Bilophila, Gordonibacter, and Sutterella. This suggests that loss of quinone biosynthesis happened independently in many lineages of the human microbiota. Quinones can be used to improve existing bacterial growth media or modulate the human gut microbiota by encouraging the growth of important symbionts, such as Faecalibacterium species.


Subject(s)
Bacteria/drug effects , Bacteria/growth & development , Gastrointestinal Microbiome/drug effects , Intercellular Signaling Peptides and Proteins/pharmacology , Vitamin K 2/metabolism , Actinobacteria/drug effects , Actinobacteria/growth & development , Bacterial Physiological Phenomena/drug effects , Bacteriological Techniques , Coculture Techniques , Escherichia coli/drug effects , Escherichia coli/growth & development , Faecalibacterium/drug effects , Faecalibacterium/growth & development , Feces/microbiology , Humans , Intercellular Signaling Peptides and Proteins/genetics , Phylogeny , Siderophores/metabolism , Ubiquinone/metabolism , Vitamin K 2/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...