Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Res Notes ; 3: 14, 2010 Jan 22.
Article in English | MEDLINE | ID: mdl-20205869

ABSTRACT

BACKGROUND: Stem cell factor (SCF) receptor c-Kit is recognized as a key signaling molecule, which transduces signals for the proliferation, differentiation and survival of stem cells. Binding of SCF to its receptor triggers transactivation, leading to the recruitment of kinases and phosphatases to the docking platforms of c-Kit catalytic domain. Tyrosine phosphatase-1 (Shp-1) deactivates/attenuates 'Kit' kinase activity. Whereas, Asp816Val mutation in the Kit activation loop transforms kinase domain to a constitutively activated state (switch off-to-on state), in a ligand-independent manner. This phenomenon completely abrogates negative regulation of Shp-1. To predict the possible molecular basis of interaction between c-Kit and Shp-1, we have performed an in silico protein-protein docking study between crystal structure of activated c-Kit (phosphorylated c-Kit) and full length crystal structure of Shp-2, a close structural counterpart of Shp-1. FINDINGS: Study revealed a stretch of conserved amino acids (Lys818 to Ser821) in the Kit activation domain, which makes decisive H-bonds with N-sh2 and phosphotyrosine binding pocket residues of the phosphatase. These H-bonds may impose an inhibitory steric hindrance to the catalytic domain of c-Kit, there by blocking further interaction of the activation loop molecules with incoming kinases. We have also predicted a phosphotyrosine binding pocket in SH2 domains of Shp-1, which is found to be predominantly closer to a catalytic groove like structure in c-Kit kinase domain. CONCLUSIONS: This study predicts that crucial hydrogen bonding between N-sh2 domain of Shp-1 and Kit activation loop can modulate the negative regulation of c-Kit kinase by Shp-1. Thus, this finding is expected to play a significant role in designing suitable gain-of-function c-Kit mutants for inducing conditional proliferation of hematopoietic stem cells.

2.
J Cell Mol Med ; 13(11-12): 4349-63, 2009.
Article in English | MEDLINE | ID: mdl-19382896

ABSTRACT

During normal haematopoiesis, cell development and differentiation programs are accomplished by switching 'on' and 'off' specific set of genes. Specificity of gene expression is primarily achieved by combinatorial control, i.e. through physical and functional interactions among several transcription factors that form sequence-specific multiprotein complexes on regulatory regions (gene promoters and enhancers). Such combinatorial gene switches permit flexibility of regulation and allow numerous developmental decisions to be taken with a limited number of regulators. The haematopoietic-specific Ets family transcription factor PU.1 regulates many lymphoid- and myeloid-specific gene promoters and enhancers by interacting with multiple proteins during haematopoietic development. Such protein-protein interactions regulate DNA binding, subcellular localization, target gene selection and transcriptional activity of PU.1 itself in response to diverse signals including cytokines, growth factors, antigen and cellular stresses. Specific domains of PU.1 interact with many protein motifs such as bHLH, bZipper, zinc fingers and paired domain for regulating its activity. This review focuses on important protein-protein interactions of PU.1 that play a crucial role in regulation of normal as well as malignant haematopoiesis. Precise delineation of PU.1 protein-partner interacting interface may provide an improved insight of the molecular mechanisms underlying haematopoietic stem cell fate regulation. Its interactions with some proteins could be targeted to modulate the aberrant signalling pathways for reversing the malignant phenotype and to control the generation of specific haematopoietic progeny for treatment of haematopoietic disorders.


Subject(s)
Cell Lineage , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Hematopoiesis , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Animals , Humans , Protein Binding , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/genetics , Trans-Activators/chemistry , Trans-Activators/genetics
3.
Stem Cells Dev ; 15(4): 609-17, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16978063

ABSTRACT

The hematopoietic transcription factor PU.1, which is required for lymphomyeloid differentiation of stem cells, was originally identified as an oncogene. In erythroid progenitors, the integration of spleen focus-forming virus (SFFV) into the PU.1 locus causes its overexpression, which blocks their terminal differentiation into erythrocytes and ultimately leads to the development of erythroleukemia. However, in myeloid lineages, PU.1 promotes granulocytic and monocytic differentiation, and graded reduction in its expression blocks their differentiation or maturation and thereby causes myelogenous leukemia. Thus, in addition to normal hematopoietic regulation, PU.1 plays a significant role in leukemogenesis. In the following review, we have consolidated our understanding of the role of transcription factor PU.1 in the development of erythroid as well myeloid leukemia.


Subject(s)
Hematopoiesis/physiology , Leukemia, Erythroblastic, Acute/metabolism , Leukemia, Myeloid, Acute/metabolism , Proto-Oncogene Proteins c-ets/metabolism , Animals , Cell Differentiation , Erythroid Cells/cytology , Humans , Proto-Oncogene Proteins c-ets/chemistry , Proto-Oncogene Proteins c-ets/genetics
4.
Stem Cells Dev ; 15(6): 755-78, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17253940

ABSTRACT

Hematopoietic stem cells (HSCs) possess a distinct ability to perpetuate through self-renewal and to generate progeny that differentiate into mature cells of myeloid and lymphoid lineages. A better understanding of the molecular mechanisms by which HSCs replicate and differentiate from the perspective of developing new approaches for HSC transplantation is necessary for further advances. The interaction of the receptor tyrosine kinase--c-KIT--with its ligand stem cell factor plays a key role in HSC survival, mitogenesis, proliferation, differentiation, adhesion, homing, migration, and functional activation. Evidence that activating site-directed point mutations in the c-KIT gene contributes to its ligand-independent constitutive activation, which induces enhanced proliferation of HSCs, is accumulating. Similarly, and equally important, self-renewal is a process by which HSCs generate daughter cells via division. Self-renewal is necessary for retaining the HSC pool. Therefore, elucidating the molecular machinery that governs self-renewal is of key importance. The transcription factor, HOXB4 is a key molecule that has been reported to induce the in vitro expansion of HSCs via self-renewal. However, critical downstream effector molecules of HOXB4 remain to be determined. This concisely reviewed information on c-KIT and HOXB4 helps us to update our understanding of their function and mechanism of action in self-renewal, proliferation, and differentiation of HSCs, particularly modulation by c-KIT mutant interactions, and HOXB4 overexpression showing certain therapeutic implications.


Subject(s)
Cell Differentiation/physiology , Cell Division/physiology , Cell Survival/physiology , Homeodomain Proteins/genetics , Proto-Oncogene Proteins c-kit/genetics , Transcription Factors/genetics , Animals , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/physiology , Humans , Mice , Protein Kinases/metabolism , Transcription Factors/metabolism
5.
FEBS Lett ; 579(17): 3503-7, 2005 Jul 04.
Article in English | MEDLINE | ID: mdl-15949801

ABSTRACT

The sequence of Bcl-2 homology domains, BH1 and BH2, is known to be conserved among anti- and pro-apoptotic members of Bcl-2 family proteins. But structural conservation of these domains with respect to functionally active residues playing role in heterodimerization-mediated regulation of apoptosis has never been elucidated. Here, we have suggested the formation of an active site by structurally conserved residues in BH1 (glycine, arginine) and BH2 (tryptophan) domains of Bcl-2 family members, which also accounts for the functional effect of known mutations in BH1 (G145A, G145E) and BH2 (W188A) domains of Bcl-2.


Subject(s)
Proto-Oncogene Proteins c-bcl-2/chemistry , Amino Acid Sequence , Amino Acid Substitution/genetics , Animals , Binding Sites/genetics , Conserved Sequence , Dimerization , Humans , Molecular Sequence Data , Point Mutation , Protein Structure, Tertiary , Proto-Oncogene Proteins c-bcl-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...