Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(39): e2301608, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37272785

ABSTRACT

Spin-orbit torques generated by a spin current are key to magnetic switching in spintronic applications. The polarization of the spin current dictates the direction of switching required for energy-efficient devices. Conventionally, the polarizations of these spin currents are restricted to be along a certain direction due to the symmetry of the material allowing only for efficient in-plane magnetic switching. Unconventional spin-orbit torques arising from novel spin current polarizations, however, have the potential to switch other magnetization orientations such as perpendicular magnetic anisotropy, which is desired for higher density spintronic-based memory devices. Here, it is demonstrated that low crystalline symmetry is not required for unconventional spin-orbit torques and can be generated in a nonmagnetic high symmetry material, iridium dioxide (IrO2 ), using epitaxial design. It is shown that by reducing the relative crystalline symmetry with respect to the growth direction large unconventional spin currents can be generated and hence spin-orbit torques. Furthermore, the spin polarizations detected in (001), (110), and (111) oriented IrO2 thin films are compared to show which crystal symmetries restrict unconventional spin transport. Understanding and tuning unconventional spin transport generation in high symmetry materials can provide a new route towards energy-efficient magnetic switching in spintronic devices.

2.
Phys Rev Lett ; 130(21): 216702, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37295086

ABSTRACT

Ferromagnets are known to support spin-polarized currents that control various spin-dependent transport phenomena useful for spintronics. On the contrary, fully compensated antiferromagnets are expected to support only globally spin-neutral currents. Here, we demonstrate that these globally spin-neutral currents can represent the Néel spin currents, i.e., staggered spin currents flowing through different magnetic sublattices. The Néel spin currents emerge in antiferromagnets with strong intrasublattice coupling (hopping) and drive the spin-dependent transport phenomena such as tunneling magnetoresistance (TMR) and spin-transfer torque (STT) in antiferromagnetic tunnel junctions (AFMTJs). Using RuO_{2} and Fe_{4}GeTe_{2} as representative antiferromagnets, we predict that the Néel spin currents with a strong staggered spin polarization produce a sizable fieldlike STT capable of the deterministic switching of the Néel vector in the associated AFMTJs. Our work uncovers the previously unexplored potential of fully compensated antiferromagnets and paves a new route to realize the efficient writing and reading of information for antiferromagnetic spintronics.

3.
Nano Lett ; 23(9): 3781-3787, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37115910

ABSTRACT

van der Waals (vdW) assembly of two-dimensional (2D) materials allows polar layer stacking to realize novel properties switchable by the induced electric polarization. Here, based on symmetry analyses and density-functional calculations, we explore the emergence of the anomalous Hall effect (AHE) in antiferromagnetic MnBi2Te4 films assembled by polar layer stacking. We demonstrate that breaking P̂T̂ symmetry in an MnBi2Te4 bilayer produces a magnetoelectric effect and a spontaneous AHE switchable by electric polarization. We find that reversible polarization at one of the interfaces in a three-layer MnBi2Te4 film drives a metal-insulator transition, as well as switching between the AHE and quantum AHE (QAHE). Finally, we predict that engineering interlayer polarization in a three-layer MnBi2Te4 film allows converting MnBi2Te4 from a trivial insulator to a Chern insulator. Overall, our work emphasizes the topological properties in 2D vdW antiferromagnets induced by polar layer stacking, which do not exist in a bulk material.

4.
Phys Rev Lett ; 128(19): 197201, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35622046

ABSTRACT

Antiferromagnetic (AFM) spintronics has emerged as a subfield of spintronics driven by the advantages of antiferromagnets producing no stray fields and exhibiting ultrafast magnetization dynamics. The efficient method to detect an AFM order parameter, known as the Néel vector, by electric means is critical to realize concepts of AFM spintronics. Here, we demonstrate that noncollinear AFM metals, such as Mn_{3}Sn, exhibit a momentum dependent spin polarization which can be exploited in AFM tunnel junctions to detect the Néel vector. Using first-principles calculations, we predict a tunneling magnetoresistance (TMR) effect as high as 300% in AFM tunnel junctions with Mn_{3}Sn electrodes, where the junction resistance depends on the relative orientation of their Néel vectors and exhibits four nonvolatile resistance states. We argue that the spin-split band structure and the related TMR effect can also be realized in other noncollinear AFM metals like Mn_{3}Ge, Mn_{3}Ga, Mn_{3}Pt, and Mn_{3}GaN. Our work provides a robust method for detecting the Néel vector in noncollinear antiferromagnets via the TMR effect, which may be useful for their application in AFM spintronic devices.

5.
Phys Rev Lett ; 124(6): 067203, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32109084

ABSTRACT

Antiferromagnetic (AFM) spintronics exploits the Néel vector as a state variable for novel spintronic devices. Recent studies have shown that the fieldlike and antidamping spin-orbit torques (SOTs) can be used to switch the Néel vector in antiferromagnets with proper symmetries. However, the precise detection of the Néel vector remains a challenging problem. In this Letter, we predict that the nonlinear anomalous Hall effect (AHE) can be used to detect the Néel vector in most compensated antiferromagnets supporting the antidamping SOT. We show that the magnetic crystal group symmetry of these antiferromagnets combined with spin-orbit coupling produce a sizable Berry curvature dipole and hence the nonlinear AHE. As a specific example, we consider the half-Heusler alloy CuMnSb, in which the Néel vector can be switched by the antidamping SOT. Based on density-functional theory calculations, we show that the nonlinear AHE in CuMnSb results in a measurable Hall voltage under conventional experimental conditions. The strong dependence of the Berry curvature dipole on the Néel vector orientation provides a new detection scheme of the Néel vector based on the nonlinear AHE. Our predictions enrich the material platform for studying nontrivial phenomena associated with the Berry curvature and broaden the range of materials useful for AFM spintronics.

6.
Phys Rev Lett ; 122(7): 077203, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30848649

ABSTRACT

Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which exploits the Néel vector to control the topological electronic states and the associated spin-dependent transport properties. A recently discovered Néel spin-orbit torque has been proposed to electrically manipulate Dirac band crossings in antiferromagnets; however, a reliable AFM material to realize these properties in practice is missing. In this Letter, we predict that room-temperature AFM metal MnPd_{2} allows the electrical control of the Dirac nodal line by the Néel spin-orbit torque. Based on first-principles density functional theory calculations, we show that reorientation of the Néel vector leads to switching between the symmetry-protected degenerate state and the gapped state associated with the dispersive Dirac nodal line at the Fermi energy. The calculated spin Hall conductivity strongly depends on the Néel vector orientation and can be used to experimentally detect the predicted effect using a proposed spin-orbit torque device. Our results indicate that AFM Dirac nodal line metal MnPd_{2} represents a promising material for topological AFM spintronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...