Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 16(9): e0257958, 2021.
Article in English | MEDLINE | ID: mdl-34591897

ABSTRACT

In the context of epidemiology, policies for disease control are often devised through a mixture of intuition and brute-force, whereby the set of logically conceivable policies is narrowed down to a small family described by a few parameters, following which linearization or grid search is used to identify the optimal policy within the set. This scheme runs the risk of leaving out more complex (and perhaps counter-intuitive) policies for disease control that could tackle the disease more efficiently. In this article, we use techniques from convex optimization theory and machine learning to conduct optimizations over disease policies described by hundreds of parameters. In contrast to past approaches for policy optimization based on control theory, our framework can deal with arbitrary uncertainties on the initial conditions and model parameters controlling the spread of the disease, and stochastic models. In addition, our methods allow for optimization over policies which remain constant over weekly periods, specified by either continuous or discrete (e.g.: lockdown on/off) government measures. We illustrate our approach by minimizing the total time required to eradicate COVID-19 within the Susceptible-Exposed-Infected-Recovered (SEIR) model proposed by Kissler et al. (March, 2020).


Subject(s)
COVID-19/prevention & control , Communicable Disease Control , COVID-19/epidemiology , COVID-19 Vaccines/therapeutic use , Communicable Disease Control/methods , Humans , Models, Biological , Models, Statistical , SARS-CoV-2/isolation & purification , Uncertainty
2.
Phys Rev Lett ; 120(20): 200402, 2018 May 18.
Article in English | MEDLINE | ID: mdl-29864297

ABSTRACT

To identify which principles characterize quantum correlations, it is essential to understand in which sense this set of correlations differs from that of almost-quantum correlations. We solve this problem by invoking the so-called no-restriction hypothesis, an explicit and natural axiom in many reconstructions of quantum theory stating that the set of possible measurements is the dual of the set of states. We prove that, contrary to quantum correlations, no generalized probabilistic theory satisfying the no-restriction hypothesis is able to reproduce the set of almost-quantum correlations. Therefore, any theory whose correlations are exactly, or very close to, the almost-quantum correlations necessarily requires a rule limiting the possible measurements. Our results suggest that the no-restriction hypothesis may play a fundamental role in singling out the set of quantum correlations among other nonsignaling ones.

3.
Nat Commun ; 7: 12049, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27384384

ABSTRACT

Recently, there has been much progress in understanding the thermodynamics of quantum systems, even for small individual systems. Most of this work has focused on the standard case where energy is the only conserved quantity. Here we consider a generalization of this work to deal with multiple conserved quantities. Each conserved quantity, which, importantly, need not commute with the rest, can be extracted and stored in its own battery. Unlike the standard case, in which the amount of extractable energy is constrained, here there is no limit on how much of any individual conserved quantity can be extracted. However, other conserved quantities must be supplied, and the second law constrains the combination of extractable quantities and the trade-offs between them. We present explicit protocols that allow us to perform arbitrarily good trade-offs and extract arbitrarily good combinations of conserved quantities from individual quantum systems.

4.
Phys Rev Lett ; 114(25): 250401, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26197110

ABSTRACT

We investigate the trade-off between information gain and disturbance for von Neumann measurements on spin-1/2 particles, and derive the measurement pointer state that saturates this trade-off, which turns out to be highly unusual. We apply this result to the question of whether the nonlocality of a single particle from an entangled pair can be shared among multiple observers that act sequentially and independently of each other, and show that an arbitrarily long sequence of such observers can all violate the Clauser-Horne-Shimony-Holt-Bell inequality.

5.
Nat Commun ; 6: 6288, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25697645

ABSTRACT

Quantum theory is not only successfully tested in laboratories every day but also constitutes a robust theoretical framework: small variations usually lead to implausible consequences, such as faster-than-light communication. It has even been argued that quantum theory may be special among possible theories. Here we report that, at the level of correlations among different systems, quantum theory is not so special. We define a set of correlations, dubbed 'almost quantum', and prove that it strictly contains the set of quantum correlations but satisfies all-but-one of the proposed principles to capture quantum correlations. We present numerical evidence that the remaining principle is satisfied too.

SELECTION OF CITATIONS
SEARCH DETAIL
...