Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Dokl Biochem Biophys ; 507(1): 330-333, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36786996

ABSTRACT

Development of combined schemes for the treatment of oncological diseases is a promising strategy to improve the effectiveness of antitumor therapy. This paper shows the fundamental possibility of multiplying the antitumor effect by combining targeted and photodynamic therapy. It was demonstrated that sequential treatment of HER-2 positive breast cancer cells with the targeted toxin DARPin-LoPE and the photoactive compound photodithazine leads to a synergistic enhancement of their effect. In the future, this approach is intended to achieve the maximum therapeutic effect while minimizing the risks of negative side effects.


Subject(s)
Neoplasms , Photochemotherapy , Receptor, ErbB-2 , Cell Line, Tumor
2.
Acta Naturae ; 13(2): 16-31, 2021.
Article in English | MEDLINE | ID: mdl-34377553

ABSTRACT

Creation of various photoluminescent nanomaterials has significantly expanded the arsenal of approaches used in modern biomedicine. Their unique photophysical properties can significantly improve the sensitivity and specificity of diagnostic methods, increase therapy effectiveness, and make a theranostic approach to treatment possible through the application of nanoparticle conjugates with functional macromolecules. The most widely used nanomaterials to date are semiconductor quantum dots; gold nanoclusters; carbon dots; nanodiamonds; semiconductor porous silicon; and up-conversion nanoparticles. This paper considers the promising groups of photoluminescent nanomaterials that can be used in medical biotechnology: in particular, for devising agents for optical diagnostic methods, sensorics, and various types of therapy.

3.
Acta Naturae ; 12(2): 86-94, 2020.
Article in English | MEDLINE | ID: mdl-32742731

ABSTRACT

Glioma is the most aggressive type of brain tumors encountered in medical practice. The high frequency of diagnosed cases and risk of metastasis, the low efficiency of traditional therapy, and the usually unfavorable prognosis for patients dictate the need to develop alternative or combined approaches for an early diagnosis and treatment of this pathology. High expectations are placed on the use of upconversion nanoparticles (UCNPs). In this study, we have produced and characterized UCNPs doped with the rare-earth elements ytterbium and thulium. Our UCNPs had photoluminescence emission maxima in the visible and infrared spectral regions, which allow for deep optical imaging of tumor cells in the brain. Moreover, we evaluated the toxicity effects of our UCNPs on a normal brain and glioma cells. It was revealed that our UCNPs are non-toxic to glioma cells but have a moderate cytotoxic effect on primary neuronal cultures at high concentrations, a condition that is characterized by a decreased cellular viability and changes in the functional metabolic activity of neuron-glial networks. Despite the great potential associated with the use of these UCNPs as fluorescent markers, there is a need for further studies on the rate of the UCNPs accumulation and excretion in normal and tumor brain cells, and the use of their surface modifications in order to reduce their cytotoxic effects.

4.
Dokl Biochem Biophys ; 491(1): 73-76, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32483755

ABSTRACT

Combining diagnostic and therapeutic functions in one agent is a promising strategy in the development of personalized approaches to the treatment of cancer. The opportunity to combine diagnostics and therapy appeared with the development of nanobiotechnologies and was realized in the concept of theranostics. To date, a number of promising agents based on nanomaterials capable of diagnosing, targeted therapeutic effects, and monitoring the response of tumor cells were obtained within the approach of theranostics. In this work, a new type of theranostic complexes based on upconversion nanoparticles coated with polyethylene glycol and functionalized with the DARPin-LoPE recombinant targeted toxin was developed. Selective binding of complexes to human breast adenocarcinoma cells overexpressing the HER2 receptor and specific toxicity to them were shown.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/therapy , Luminescence , Receptor, ErbB-2/metabolism , Theranostic Nanomedicine , Animals , CHO Cells , Cricetinae , Cricetulus , Female , Humans , Nanoparticles/chemistry , Nanostructures/chemistry , Photochemistry , Polyethylene Glycols/chemistry , Protein Binding , Thulium/chemistry , Ytterbium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...