Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 296: 100305, 2021.
Article in English | MEDLINE | ID: mdl-33465378

ABSTRACT

The type II secretion system (T2SS) transports fully folded proteins of various functions and structures through the outer membrane of Gram-negative bacteria. The molecular mechanisms of substrate recruitment by T2SS remain elusive but a prevailing view is that the secretion determinants could be of a structural nature. The phytopathogenic γ-proteobacteria, Pectobacterium carotovorum and Dickeya dadantii, secrete similar sets of homologous plant cell wall degrading enzymes, mainly pectinases, by similar T2SSs, called Out. However, the orthologous pectate lyases Pel3 and PelI from these bacteria, which share 67% of sequence identity, are not secreted by the counterpart T2SS of each bacterium, indicating a fine-tuned control of protein recruitment. To identify the related secretion determinants, we first performed a structural characterization and comparison of Pel3 with PelI using X-ray crystallography. Then, to assess the biological relevance of the observed structural variations, we conducted a loop-substitution analysis of Pel3 combined with secretion assays. We showed that there is not one element with a definite secondary structure but several distant and structurally flexible loop regions that are essential for the secretion of Pel3 and that these loop regions act together as a composite secretion signal. Interestingly, depending on the crystal contacts, one of these key secretion determinants undergoes disorder-to-order transitions that could reflect its transient structuration upon the contact with the appropriate T2SS components. We hypothesize that such T2SS-induced structuration of some intrinsically disordered zones of secretion substrates could be part of the recruitment mechanism used by T2SS.


Subject(s)
Bacterial Proteins/chemistry , Dickeya/enzymology , Pectobacterium carotovorum/enzymology , Polysaccharide-Lyases/chemistry , Type II Secretion Systems/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cell Wall/chemistry , Cell Wall/microbiology , Cloning, Molecular , Crystallography, X-Ray , Dickeya/classification , Dickeya/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Models, Molecular , Pectobacterium carotovorum/classification , Pectobacterium carotovorum/genetics , Phylogeny , Plant Cells/chemistry , Plant Cells/microbiology , Plants/chemistry , Plants/microbiology , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Type II Secretion Systems/genetics , Type II Secretion Systems/metabolism
2.
J Proteome Res ; 19(3): 1319-1337, 2020 03 06.
Article in English | MEDLINE | ID: mdl-31991085

ABSTRACT

Aphids are phloem-feeding insects known as major pests in agriculture that are able to transmit hundreds of plant viruses. The majority of these viruses, classified as noncirculative, are retained and transported on the inner surface of the cuticle of the needle-like mouthparts while the aphids move from plant to plant. Identification of receptors of viruses within insect vectors is a key challenge because they are promising targets for alternative control strategies. The acrostyle, an organ discovered earlier within the common food/salivary canal at the tip of aphid maxillary stylets, displays proteins at the cuticle-fluid interface, some of which are receptors of noncirculative viruses. To assess the presence of stylet- and acrostyle-specific proteins and identify putative receptors, we have developed a comprehensive comparative analysis of the proteomes of four cuticular anatomical structures of the pea aphid, stylets, antennae, legs, and wings. In addition, we performed systematic immunolabeling detection of the cuticular proteins identified by mass spectrometry in dissected stylets. We thereby establish the first proteome of stylets of an insect and determine the minimal repertoire of the cuticular proteins composing the acrostyle. Most importantly, we propose a short list of plant virus receptor candidates, among which RR-1 proteins are remarkably predominant. The data are available via ProteomeXchange (PXD016517).


Subject(s)
Aphids , Plant Viruses , Animals , Insect Proteins/genetics , Pisum sativum , Plant Viruses/genetics , Proteomics , Receptors, Virus
3.
iScience ; 23(2): 100828, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32000126

ABSTRACT

Insects have developed intriguing cuticles with very specific structures and functions, including microstructures governing their interactions with transmitted microbes, such as in aphid mouthparts harboring virus receptors within such microstructures. Here, we provide the first transcriptome analysis of an insect mouthpart cuticle ("retort organs" [ROs], the stylets' precursors). This analysis defined stylets as a complex composite material. The retort transcriptome also allowed us to propose an algorithmic definition of a new cuticular protein (CP) family with low complexity and biased amino acid composition. Finally, we identified a differentially expressed gene encoding a pyrokinin (PK) neuropeptide precursor and characterizing the mandibular glands. Injection of three predicted synthetic peptides PK1/2/3 into aphids prior to ecdysis caused a molt-specific phenotype with altered head formation. Our study provides the most complete description to date of the potential protein composition of aphid stylets, which should improve the understanding of the transmission of stylet-borne viruses.

4.
Sci Rep ; 6: 36711, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27824140

ABSTRACT

Transposition mutagenesis is a powerful tool to identify the function of genes, reveal essential genes and generally to unravel the genetic basis of living organisms. However, transposon-mediated mutagenesis has only been successfully applied to a limited number of archaeal species and has never been reported in Thermococcales. Here, we report random insertion mutagenesis in the hyperthermophilic archaeon Pyrococcus furiosus. The strategy takes advantage of the natural transformability of derivatives of the P. furiosus COM1 strain and of in vitro Mariner-based transposition. A transposon bearing a genetic marker is randomly transposed in vitro in genomic DNA that is then used for natural transformation of P. furiosus. A small-scale transposition reaction routinely generates several hundred and up to two thousands transformants. Southern analysis and sequencing showed that the obtained mutants contain a single and random genomic insertion. Polyploidy has been reported in Thermococcales and P. furiosus is suspected of being polyploid. Yet, about half of the mutants obtained on the first selection are homozygous for the transposon insertion. Two rounds of isolation on selective medium were sufficient to obtain gene conversion in initially heterozygous mutants. This transposition mutagenesis strategy will greatly facilitate functional exploration of the Thermococcales genomes.


Subject(s)
DNA Transposable Elements , Genes, Archaeal , Mutagenesis , Pyrococcus furiosus/genetics , Animals , Culture Media , Gene Library , Genes, Essential , Genomics , Homozygote , Hydrogen-Ion Concentration , Insecta , Mutagenesis, Insertional , Phenotype , Polyploidy
5.
Mol Microbiol ; 94(1): 126-40, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25098941

ABSTRACT

Type II secretion system (T2SS) is a multiprotein trans-envelope complex that translocates fully folded proteins through the outer membrane of Gram-negative bacteria. Although T2SS is extensively studied in several bacteria pathogenic for humans, animals and plants, the molecular basis for exoprotein recruitment by this secretion machine as well as the underlying targeting motifs remain unknown. To address this question, we used bacterial two-hybrid, surface plasmon resonance, in vivo site-specific photo-cross-linking approaches and functional analyses. We showed that the fibronectin-like Fn3 domain of exoprotein PelI from Dickeya dadantii interacts with four periplasmic domains of the T2SS components GspD and GspC. The interaction between exoprotein and the GspC PDZ domain is positively modulated by the GspD N1 domain, suggesting that exoprotein secretion is driven by a succession of synergistic interactions. We found that an exposed 9-residue-long loop region of PelI interacts with the GspC PDZ domain. This loop acts as a specific secretion signal that controls exoprotein recruitment by the T2SS. Concerted in silico and in vivo approaches reveal the occurrence of equivalent secretion motifs in other exoproteins, suggesting a plausible general mechanism of exoprotein recruitment by the T2SS.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems , Enterobacteriaceae/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Enterobacteriaceae/chemistry , Enterobacteriaceae/genetics , Periplasm/chemistry , Periplasm/genetics , Periplasm/metabolism , Protein Binding , Protein Structure, Tertiary , Protein Transport
6.
PLoS One ; 8(11): e79562, 2013.
Article in English | MEDLINE | ID: mdl-24223969

ABSTRACT

The type II secretion system (T2SS) is a multiprotein nanomachine that transports folded proteins across the outer membrane of gram-negative bacteria. The molecular mechanisms that govern the secretion process remain poorly understood. The inner membrane components GspC, GspL and GspM possess a single transmembrane segment (TMS) and a large periplasmic region and they are thought to form a platform of unknown function. Here, using two-hybrid and pull-down assays we performed a systematic mapping of the GspC/GspL/GspM interaction regions in the plant pathogen Dickeya dadantii. We found that the TMS of these components interact with each other, implying a complex interaction network within the inner membrane. We also showed that the periplasmic, ferredoxin-like, domains of GspL and GspM drive homo- and heterodimerizations of these proteins. Disulfide bonding analyses revealed that the respective domain interfaces include the equivalent secondary-structure elements, suggesting alternating interactions of the periplasmic domains, L/L and M/M versus L/M. Finally, we found that displacements of the periplasmic GspM domain mediate coordinated shifts or rotations of the cognate TMS. These data suggest a plausible mechanism for signal transmission between the periplasmic and the cytoplasmic portions of the T2SS machine.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Secretion Systems , Cell Membrane/metabolism , Enterobacteriaceae/cytology , Periplasm/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Ferredoxins/chemistry , Models, Molecular , Molecular Sequence Data , Mutagenesis , Protein Binding , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Tertiary
7.
J Biol Chem ; 287(23): 19082-93, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22523076

ABSTRACT

The type II secretion system (T2SS) secretes enzymes and toxins across the outer membrane of Gram-negative bacteria. The precise assembly of T2SS, which consists of at least 12 core-components called Gsp, remains unclear. The outer membrane secretin, GspD, forms the channels, through which folded proteins are secreted, and interacts with the inner membrane component, GspC. The periplasmic regions of GspC and GspD consist of several structural domains, HR(GspC) and PDZ(GspC), and N0(GspD) to N3(GspD), respectively, and recent structural and functional studies have proposed several interaction sites between these domains. We used cysteine mutagenesis and disulfide bonding analysis to investigate the organization of GspC and GspD protomers and to map their interaction sites within the secretion machinery of the plant pathogen Dickeya dadantii. At least three distinct GspC-GspD interactions were detected, and they involve two sites in HR(GspC), two in N0(GspD), and one in N2(GspD). None of these interactions occurs through static interfaces because the same sites are also involved in self-interactions with equivalent neighboring domains. Disulfide self-bonding of critical interaction sites halts secretion, indicating the transient nature of these interactions. The secretion substrate diminishes certain interactions and provokes an important rearrangement of the HR(GspC) structure. The T2SS components OutE/L/M affect various interaction sites differently, reinforcing some but diminishing the others, suggesting a possible switching mechanism of these interactions during secretion. Disulfide mapping shows that the organization of GspD and GspC subunits within the T2SS could be compatible with a hexamer of dimers arrangement rather than an organization with 12-fold rotational symmetry.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems/physiology , Dickeya chrysanthemi/metabolism , Disulfides/metabolism , Membrane Proteins/metabolism , Protein Multimerization , Bacterial Proteins/genetics , Cysteine/genetics , Cysteine/metabolism , Dickeya chrysanthemi/genetics , Membrane Proteins/genetics , Mutagenesis , Peptide Mapping/methods , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...