Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Heart Circ Physiol ; 325(6): H1354-H1359, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37801048

ABSTRACT

Adequate maternal dietary levels of one-carbon metabolites, such as folic acid and choline, play an important role in the closure of the neural tube in utero; however, the impact of deficiencies in one-carbon (1C) metabolism on offspring neurological function after birth remain undefined. Stroke is one of the leading causes of death and disability globally. The aim of our study was to determine the impact of maternal 1C nutritional deficiencies on cerebral and peripheral blood flow after ischemic stroke in adult female offspring. In this study, female mice were placed on either control (CD)-, folic acid (FADD)-, or choline (ChDD)-deficient diets before pregnancy. Female offspring were weaned onto a CD for the duration of the study. Ischemic stroke was induced in offspring and after 6 wk cerebral and peripheral blood flow velocity was measured using ultrasound imaging. Our data showed that 11.5-mo-old female offspring from ChDD mothers had reduced blood flow in the posterior cerebral artery compared with controls. In peripheral blood flow velocity measurements, we report an aging effect. These results emphasize the importance of maternal 1C diet in early life neuro-programming on long-term vasculature health.NEW & NOTEWORTHY We demonstrate that a maternal dietary deficiency in one-carbon (1C) metabolites result in reduced cerebral blood flow in adult female offspring after ischemic stroke, but the long-term effects are not present. This result points to the key role of the maternal diet in early life neuroprogramming, while emphasizing its effects on both fetal development and long-term cerebrovascular health.


Subject(s)
Ischemic Stroke , Prenatal Exposure Delayed Effects , Pregnancy , Mice , Female , Animals , Humans , Folic Acid/metabolism , Diet , Choline , Carbon , Maternal Nutritional Physiological Phenomena
2.
J Vis Exp ; (186)2022 08 12.
Article in English | MEDLINE | ID: mdl-36036616

ABSTRACT

Small volume chamber tensometric myography is a commonly used technique to evaluate the vascular contractility of small and large blood vessels in laboratory animals and small arteries isolated from human tissue. The technique allows researchers to maintain isolated blood vessels in a tightly controlled and standardized (near-physiological) setting, with the option of adjusting to various environmental factors, while challenging the isolated vessels with different pharmacological agents that can induce vasoconstriction or vasodilation. The myograph chamber also provides a platform to measure vascular reactivity in response to various hormones, inhibitors, and agonists that may impact the function of smooth muscle and endothelial layers separately or simultaneously. The blood vessel wall is a complex structure consisting of three different layers: the intima (endothelial layer), media (smooth muscle and elastin fibers), and adventitia (collagen and other connective tissue). To gain a clear understanding of the functional properties of each layer, it is critical to have access to an experimental platform and system that would allow for a combinational approach to study all three layers simultaneously. Such an approach demands access to a semi-physiological condition that would mimic the in vivo environment in an ex vivo setting. Small volume chamber tensometric myography has provided an ideal environment to evaluate the impact of environmental cues, experimental variables, or pharmacological agonists and antagonists on vascular properties. For many years, scientists have used the tensometric myograph technique to measure endothelial function and smooth muscle contractility in response to different agents. In this report, a small volume chamber tensometric myograph system is used to measure endothelial function in the isolated mouse aorta. This report focuses on how small volume chamber tensometric myography can be used to evaluate the functional integrity of the endothelium in small segments of a large artery such as the thoracic aorta.


Subject(s)
Aorta, Thoracic , Vasodilation , Animals , Endothelium, Vascular/physiology , Humans , Mice , Myography/methods , Vasoconstriction/physiology , Vasodilation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...