Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 452: 131239, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36963193

ABSTRACT

Plastic packaging is usually heavily printed with inks to provide functional benefits. However, the presence of inks strongly impedes the closed-loop recycling of plastic films. Various media have already been studied for the deinking of plastic films, but there is little scientific insight into the effectiveness of different deinking techniques. Therefore, this study aims to obtain a systematic understanding by measuring the liquefaction and maximum solubility of 14 chemically different polymer resins in seven different media typically used in plastic deinking, such as acetone, ethyl acetate, sodium hydroxide solution, cetyltrimethylammonium bromide solution, formic acid, sulfuric acid, and N,N-dimethylcyclohexylamine. Our findings show that acid-based media are able to remove a broader range of polymer resins. Organic solvents are particularly effective against acrylics and related polymer resins. The deinking efficiency tests on pure resins are also confirmed by deinking four printed plastic films containing different classes of polymer resins. A basic cost and environmental impact analysis is given to evaluate scale-up potential of the deinking medium.

2.
Opt Lett ; 42(24): 5070-5073, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29240139

ABSTRACT

The effect of Be layers on the reflection coefficients of Mo/Be/Si multilayer mirrors in the extreme ultraviolet (EUV) region is reported. Samples were studied using laboratory and synchrotron based reflectometry, and high-resolution transmission electron microscopy. The samples under study have reflection coefficients above 71% at 13.5 nm and more than 72% at 12.9 nm in a near normal incidence mode. Calculations show that by optimizing the thickness of the Be layer it should be possible to increase the reflection coefficient by another 0.5-1%. These results are of considerable interest for EUV lithography.

3.
Biol Cybern ; 109(1): 47-62, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25158624

ABSTRACT

This article is concerned with the generic structure of the motion coordination system resulting from the application of the method of virtual holonomic constraints (VHCs) to the problem of the generation and robust execution of a dynamic humanlike motion by a humanoid robot. The motion coordination developed using VHCs is based on a motion generator equation, which is a scalar nonlinear differential equation of second order. It can be considered equivalent in function to a central pattern generator in living organisms. The relative time evolution of the degrees of freedom of a humanoid robot during a typical motion are specified by a set of coordination functions that uniquely define the overall pattern of the motion. This is comparable to a hypothesis on the existence of motion patterns in biomechanics. A robust control is derived based on a transverse linearization along the configuration manifold defined by the coordination functions. It is shown that the derived coordination and control architecture possesses excellent robustness properties. The analysis is performed on an example of a real human motion recorded in test experiments.


Subject(s)
Computer Simulation , Models, Theoretical , Motion , Movement/physiology , Nonlinear Dynamics , Robotics , Humans , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...