Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
J Pharm Sci ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38692487

ABSTRACT

Antibacterial therapy with phage-encoded endolysins or their modified derivatives with improved antibacterial, biochemical and pharmacokinetic properties is one of the most promising strategies that can supply existing antibacterial drugs array. Gram-negative bacteria-induced infections treatment is especially challenging because of rapidly spreading bacterial resistance. We have developed modified endolysin LysECD7-SMAP with a significant antibacterial activity and broad spectra of action against gram-negative bacteria. Endolysin was formulated in a bactericidal gel for topical application with pronounced effectivity in local animal infectious models. Here we present preclinical safety studies and pharmacokinetics of LysECD7-SMAP-based gel. We have detected LysECD7-SMAP in the skin and underlying muscle at therapeutic concentrations when the gel is applied topically to intact or injured skin. Moreover, the protein does not enter the bloodstream, and has no systemic bioavailability, assuming no systemic adverse effects. In studies of general toxicology, local tolerance, and immunotoxicology it was approved that LysECD7-SMAP gel local application results in the absence of toxic effects after single and multiple administration. Thus, LysECD7-SMAP-containing gel has appropriate pharmacokinetics and can be considered as safe that supports the initiation of the phase I clinical trials of novel antibacterial drug intending to treat acute wound infections caused by resistant gram-negative bacteria.

2.
Front Immunol ; 15: 1381508, 2024.
Article in English | MEDLINE | ID: mdl-38690272

ABSTRACT

Seasonal influenza remains a serious global health problem, leading to high mortality rates among the elderly and individuals with comorbidities. Vaccination is generally accepted as the most effective strategy for influenza prevention. While current influenza vaccines are effective, they still have limitations, including narrow specificity for certain serological variants, which may result in a mismatch between vaccine antigens and circulating strains. Additionally, the rapid variability of the virus poses challenges in providing extended protection beyond a single season. Therefore, mRNA technology is particularly promising for influenza prevention, as it enables the rapid development of multivalent vaccines and allows for quick updates of their antigenic composition. mRNA vaccines have already proven successful in preventing COVID-19 by eliciting rapid cellular and humoral immune responses. In this study, we present the development of a trivalent mRNA vaccine candidate, evaluate its immunogenicity using the hemagglutination inhibition assay, ELISA, and assess its efficacy in animals. We demonstrate the higher immunogenicity of the mRNA vaccine candidate compared to the inactivated split influenza vaccine and its enhanced ability to generate a cross-specific humoral immune response. These findings highlight the potential mRNA technology in overcoming current limitations of influenza vaccines and hold promise for ensuring greater efficacy in preventing seasonal influenza outbreaks.


Subject(s)
Immunity, Humoral , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Orthomyxoviridae Infections , mRNA Vaccines , Animals , Female , Humans , Mice , Cross Reactions/immunology , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunity, Humoral/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Mice, Inbred BALB C , mRNA Vaccines/administration & dosage , mRNA Vaccines/chemistry , mRNA Vaccines/genetics , mRNA Vaccines/immunology , Seasons , Time Factors , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology
3.
Vaccines (Basel) ; 12(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38675761

ABSTRACT

SARS-CoV-2 variants have evolved over time in recent years, demonstrating immune evasion of vaccine-induced neutralizing antibodies directed against the original S protein. Updated S-targeted vaccines provide a high level of protection against circulating variants of SARS-CoV-2, but this protection declines over time due to ongoing virus evolution. To achieve a broader protection, novel vaccine candidates involving additional antigens with low mutation rates are currently needed. Based on our recently studied mRNA lipid nanoparticle (mRNA-LNP) platform, we have generated mRNA-LNP encoding SARS-CoV-2 structural proteins M, N, S from different virus variants and studied their immunogenicity separately or in combination in vivo. As a result, all mRNA-LNP vaccine compositions encoding the S and N proteins induced excellent titers of RBD- and N-specific binding antibodies. The T cell responses were mainly specific CD4+ T cell lymphocytes producing IL-2 and TNF-alpha. mRNA-LNP encoding the M protein did not show a high immunogenicity. High neutralizing activity was detected in the sera of mice vaccinated with mRNA-LNP encoding S protein (alone or in combinations) against closely related strains, but was undetectable or significantly lower against an evolutionarily distant variant. Our data showed that the addition of mRNAs encoding S and M antigens to mRNA-N in the vaccine composition enhanced the immunogenicity of mRNA-N and induced a more robust immune response to the N protein. Based on our results, we suggested that the S protein plays a key role in enhancing the immune response to the N protein when they are both encoded in the mRNA-LNP vaccine.

4.
World J Microbiol Biotechnol ; 40(6): 186, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683213

ABSTRACT

The ability of most opportunistic bacteria to form biofilms, coupled with antimicrobial resistance, hinder the efforts to control widespread infections, resulting in high risks of negative outcomes and economic costs. Endolysins are promising compounds that efficiently combat bacteria, including multidrug-resistant strains and biofilms, without a low probability of subsequent emergence of stable endolysin-resistant phenotypes. However, the details of antibiofilm effects of these enzymes are poorly understood. To elucidate the interactions of bacteriophage endolysins LysAm24, LysAp22, LysECD7, and LysSi3 with bacterial films formed by Gram-negative species, we estimated their composition and assessed the endolysins' effects on the most abundant exopolymers in vitro. The obtained data suggests a pronounced efficiency of these lysins against biofilms with high (Klebsiella pneumoniae) and low (Acinetobacter baumannii) matrix contents, or dual-species biofilms, resulting in at least a twofold loss of the biomass. These peptidoglycan hydrolases interacted diversely with protective compounds of biofilms such as extracellular DNA and polyanionic carbohydrates, indicating a spectrum of biofilm-disrupting effects for bacteriolytic phage enzymes. Specifically, we detected disruption of acid exopolysaccharides by LysAp22, strong DNA-binding capacity of LysAm24, both of these interactions for LysECD7, and neither of them for LysSi3.


Subject(s)
Bacteriophages , Biofilms , Endopeptidases , Biofilms/drug effects , Biofilms/growth & development , Endopeptidases/metabolism , Endopeptidases/pharmacology , Endopeptidases/chemistry , Bacteriophages/enzymology , Acinetobacter baumannii/drug effects , Klebsiella pneumoniae/drug effects , Viral Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , N-Acetylmuramoyl-L-alanine Amidase/metabolism , N-Acetylmuramoyl-L-alanine Amidase/chemistry
5.
Viruses ; 16(4)2024 04 09.
Article in English | MEDLINE | ID: mdl-38675918

ABSTRACT

Cell cultures derived from ticks have become a commonly used tool for the isolation and study of tick-borne pathogens and tick biology. The IRE/CTVM19 cell line, originating from embryos of Ixodes ricinus, is one such line. Previously, reovirus-like particles, as well as sequences with similarity to rhabdoviruses and iflaviruses, were detected in the IRE/CTVM19 cell line, suggesting the presence of multiple persisting viruses. Subsequently, the full genome of an IRE/CTVM19-associated rhabdovirus was recovered from a cell culture during the isolation of the Alongshan virus. In the current work, we used high-throughput sequencing to describe a virome of the IRE/CTVM19 cell line. In addition to the previously detected IRE/CTVM19-associated rhabdovirus, two rhabdoviruses were detected: Chimay rhabdovirus and Norway mononegavirus 1. In the follow-up experiments, we were able to detect both positive and negative RNA strands of the IRE/CTVM19-associated rhabdovirus and Norway mononegavirus 1 in the IRE/CTVM19 cells, suggesting their active replication in the cell line. Passaging attempts in cell lines of mammalian origin failed for all three discovered rhabdoviruses.


Subject(s)
Genome, Viral , High-Throughput Nucleotide Sequencing , Rhabdoviridae , Rhabdoviridae/genetics , Rhabdoviridae/isolation & purification , Rhabdoviridae/classification , Animals , Cell Line , Phylogeny , Virus Replication , RNA, Viral/genetics , Virome/genetics , Rhabdoviridae Infections/virology , Rhabdoviridae Infections/veterinary
6.
Antiviral Res ; 225: 105871, 2024 May.
Article in English | MEDLINE | ID: mdl-38555022

ABSTRACT

The spread of COVID-19 continues due to genetic variation in SARS-CoV-2. Highly mutated variants of SARS-CoV-2 have an increased transmissibility and immune evasion. Due to the emergence of various new variants of the virus, there is an urgent need to develop broadly effective specific drugs for therapeutic strategies for the prevention and treatment of COVID-19. Molnupiravir (EIDD-2801, MK-4482), is an orally bioavailable ribonucleoside analogue of ß-D-N4-hydroxycytidine (NHC), has demonstrated efficacy against SARS-CoV-2 and was recently approved for COVID-19 treatment. To improve antiviral potency of NHC, we developed a panel of NHC conjugates with lipophilic vectors and ester derivatives with amino- and carboxylic-acids. Most of the synthesized compounds had comparable or higher (2-20 times) antiviral activity than EIDD-2801, against different lineages of SARS-CoV-2, MERS-CoV, seasonal coronaviruses OC43 and 229E, as well as bovine coronavirus. For further studies, we assessed the most promising compound in terms of activity, simplicity and cost of synthesis - NHC conjugate with phenylpropionic acid (SN_9). SN_9 has shown high efficacy in prophylactic, therapeutic and transmission models of COVID-19 infection in hamsters. Importantly, SN_9 profoundly inhibited virus replication in the lower respiratory tract of hamsters and transgenic mice infected with the Omicron sublineages XBB.1.9.1, XBB.1.16 and EG.5.1.1. These data indicate that SN_9 represents a promising antiviral drug candidate for COVID-19 treatment, and NHC modification strategies deserve further investigation as an approach to develop prodrugs against various coronaviruses.


Subject(s)
COVID-19 , Cytidine/analogs & derivatives , Hydroxylamines , SARS-CoV-2 , Mice , Animals , Cattle , Humans , Antiviral Agents/pharmacology , COVID-19 Drug Treatment
7.
Biochim Biophys Acta Gen Subj ; 1868(5): 130582, 2024 May.
Article in English | MEDLINE | ID: mdl-38340879

ABSTRACT

BACKGROUND: Riboflavin (vitamin B2) is one of the most important water-soluble vitamins and a coenzyme involved in many biochemical processes. It has previously been shown that adjuvant therapy with flavin mononucleotide (a water-soluble form of riboflavin) correlates with normalization of clinically relevant immune markers in patients with COVID-19, but the mechanism of this effect remains unclear. Here, the antiviral and anti-inflammatory effects of riboflavin were investigated to elucidate the molecular mechanisms underlying the riboflavin-induced effects. METHODS: Riboflavin was evaluated for recombinant SARS-CoV-2 PLpro inhibition in an enzyme kinetic assay and for direct inhibition of SARS-CoV-2 replication in Vero E6 cells, as well as for anti-inflammatory activity in polysaccharide-induced inflammation models, including endothelial cells in vitro and acute lung inflammation in vivo. RESULTS: For the first time, the ability of riboflavin at high concentrations (above 50 µM) to inhibit SARS-CoV-2 PLpro protease in vitro was demonstrated; however, no inhibition of viral replication in Vero E6 cells in vitro was found. At the same time, riboflavin exerted a pronounced anti-inflammatory effect in the polysaccharide-induced inflammation model, both in vitro, preventing polysaccharide-induced cell death, and in vivo, reducing inflammatory markers (IL-1ß, IL-6, and TNF-α) and normalizing lung histology. CONCLUSIONS: It is concluded that riboflavin reveals anti-inflammatory rather than antiviral activity for SARS-CoV-2 infection. GENERAL SIGNIFICANCE: Riboflavin could be suggested as a promising compound for the therapy of inflammatory diseases of broad origin.


Subject(s)
COVID-19 , Endothelial Cells , Humans , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Antiviral Agents/pharmacology , Riboflavin/pharmacology , Polysaccharides , Water
8.
Gels ; 10(1)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38247783

ABSTRACT

The development of new and effective antibacterials for pharmaceutical or cosmetic skin care that have a low potential for the emergence and expansion of bacterial resistance is of high demand in scientific and applied research. Great hopes are placed on alternative agents such as bactericidal peptidoglycan hydrolases, depolymerases, etc. Enzybiotic-based preparations are being studied for the treatment of various infections and, among others, can be used as topical formulations and dressings with protein-polysaccharide complexes. Here, we investigate the antibiofilm properties of a novel enzybiotic cocktail of phage endolysin LysSi3 and bacteriocin lysostaphin, formulated in the alginate gel matrix and its ability to control the opportunistic skin-colonizing bacteria Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, as well as mixed-species biofilms. Our results propose that the application of SiL-gel affects different components of biofilm extracellular polymeric substances, disrupts the matrix, and eliminates the bacteria embedded in it. This composition is highly effective against biofilms composed of Gram-negative and Gram-positive species and does not possess significant cytotoxic effects. Our data form the basis for the development of antibacterial skin care products with a gentle but effective mode of action.

9.
Vaccines (Basel) ; 11(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37896937

ABSTRACT

The spread of COVID-19 continues, expressed by periodic wave-like increases in morbidity and mortality. The reason for the periodic increases in morbidity is the emergence and spread of novel genetic variants of SARS-CoV-2. A decrease in the efficacy of monoclonal antibodies (mAbs) has been reported, especially against Omicron subvariants. There have been reports of a decrease in the efficacy of specific antiviral drugs as a result of mutations in the genes of non-structural proteins. This indicates the urgent need for practical healthcare to constantly monitor pathogen variability and its effect on the efficacy of preventive and therapeutic drugs. As part of this study, we report the results of the continuous monitoring of COVID-19 in Moscow using genetic and virological methods. As a result of this monitoring, we determined the dominant genetic variants and identified the variants that are most widespread, not only in Moscow, but also in other countries. A collection of viruses from more than 500 SARS-CoV-2 isolates has been obtained and characterized. The genetic lines XBB.1.9.1, XBB.1.9.3, XBB.1.5, XBB.1.16, XBB.2.4, BQ.1.1.45, CH.1.1, and CL.1, representing the greatest concern, were identified among the dominant variants. We studied the in vitro efficacy of mAbs Tixagevimab + Cilgavimab (Evusheld), Sotrovimab, Regdanvimab, Casirivimab + Imdevimab (Ronapreve), and Bebtelovimab, as well as the specific antiviral drugs Remdesivir, Molnupiravir, and Nirmatrelvir, against these genetic lines. At the current stage of the COVID-19 pandemic, the use of mAbs developed against early SARS-CoV-2 variants has little prospect. Specific antiviral drugs retain their activity, but further monitoring is needed to assess the risk of their efficacy being reduced and adjust recommendations for their use.

10.
Front Immunol ; 14: 1228461, 2023.
Article in English | MEDLINE | ID: mdl-37600800

ABSTRACT

To protect young individuals against SARS-CoV-2 infection, we conducted an open-label, prospective, non-randomised dose-escalation Phase 1/2 clinical trial to evaluate the immunogenicity and safety of the prime-boost "Sputnik V" vaccine administered at 1/10 and 1/5 doses to adolescents aged 12-17 years. The study began with the vaccination of the older cohort (15-to-17-year-old participants) with the lower (1/10) dose of vaccine and then expanded to the whole group (12-to-17-year-old participants). Next, 1/5 dose was used according to the same scheme. Both doses were well tolerated by all age groups. No serious or severe adverse events were detected. Most of the solicited adverse reactions were mild. No significant differences in total frequencies of adverse events were registered between low and high doses in age-pooled groups (69.6% versus 66.7%). In contrast, the 1/5 dose induced significantly higher humoral and T cell-mediated immune responses than the 1/10 dose. The 1/5 vaccine dose elicited higher antigen-binding (both S and RBD-specific) as well as virus-neutralising antibody titres at the maximum of response (day 42), also resulting in a statistically significant difference at a distanced timepoint (day 180) compared to the 1/10 vaccine dose. Higher dose resulted in increased cross-neutralization of Delta and Omicron variants. Clinical Trial Registration: ClinicalTrials.gov, NCT04954092, LP-007632.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , Child , Humans , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Prospective Studies , SARS-CoV-2
11.
Front Immunol ; 14: 1098302, 2023.
Article in English | MEDLINE | ID: mdl-36865543

ABSTRACT

Single-domain antibodies (sdAbs, VHHs, or nanobodies) are a promising tool for the treatment of both infectious and somatic diseases. Their small size greatly simplifies any genetic engineering manipulations. Such antibodies have the ability to bind hard-to-reach antigenic epitopes through long parts of the variable chains, the third complementarity-determining regions (CDR3s). VHH fusion with the canonical immunoglobulin Fc fragment allows the Fc-fusion single-domain antibodies (VHH-Fc) to significantly increase their neutralizing activity and serum half-life. Previously we have developed and characterized VHH-Fc specific to botulinum neurotoxin A (BoNT/A), that showed a 1000-fold higher protective activity than monomeric form when challenged with five times the lethal dose (5 LD50) of BoNT/A. During the COVID-19 pandemic, mRNA vaccines based on lipid nanoparticles (LNP) as a delivery system have become an important translational technology that has significantly accelerated the clinical introduction of mRNA platforms. We have developed an mRNA platform that provides long-term expression after both intramuscular and intravenous application. The platform has been extensively characterized using firefly luciferase (Fluc) as a reporter. An intramuscular administration of LNP-mRNA encoding VHH-Fc antibody made it possible to achieve its rapid expression in mice and resulted in 100% protection when challenged with up to 100 LD50 of BoNT/A. The presented approach for the delivery of sdAbs using mRNA technology greatly simplifies drug development for antibody therapy and can be used for emergency prophylaxis.


Subject(s)
Botulinum Toxins, Type A , COVID-19 , Single-Domain Antibodies , Animals , Humans , Mice , Single-Domain Antibodies/genetics , Pandemics , Dose-Response Relationship, Drug
12.
Vaccines (Basel) ; 11(2)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36851307

ABSTRACT

A neonatal vaccination against the Hepatitis B virus (HBV) infection was initiated in Russia 20 years ago, with catch-up immunization for adolescents and adults under the age of 60 years launched in 2006. Here, we have assessed the humoral immunity to HBV in different regions of Russia, as well as the infection frequency following 20 years of a nationwide vaccination campaign. We have also evaluated the role of immune-escape variants in continuing HBV circulation. A total of 36,149 healthy volunteers from nine regions spanning the Russian Federation from west to east were tested for HBV surface antigen (HBsAg), antibodies to HBV capsid protein (anti-HBc), and antibodies to HBsAg (anti-HBs). HBV sequences from 481 chronic Hepatitis B patients collected from 2018-2022 were analyzed for HBsAg immune-escape variants, compared with 205 sequences obtained prior to 2010. Overall, the HBsAg detection rate was 0.8%, with this level significantly exceeded only in one study region, the Republic of Dagestan (2.4%, p < 0.0001). Among the generation vaccinated at birth, the average HBsAg detection rate was below 0.3%, ranging from 0% to 0.7% depending on the region. The anti-HBc detection rate in subjects under 20 years was 7.4%, indicating ongoing HBV circulation. The overall proportion of participants under 20 years with vaccine-induced HBV immunity (anti-HBs positive, anti-HBc negative) was 41.7% but below 10% in the Tuva Republic and below 25% in the Sverdlovsk and Kaliningrad regions. The overall prevalence of immune-escape HBsAg variants was 25.2% in sequences obtained from 2018-2022, similar to the prevalence of 25.8% in sequences collected prior to 2010 (p > 0.05). The population dynamics of immune-escape variants predicted by Bayesian analysis have remained stable over the last 20 years, indicating the absence of vaccine-driven positive selection. In contrast, the wild-type HBV population size experienced a rapid decrease starting in the mid-1990s, following the introduction of mass immunization, but it subsequently began to recover, reaching pre-vaccination levels by 2020. Taken together, these data indicate that it is gaps in vaccination, and not virus evolution, that may be responsible for the continued virus circulation despite 20 years of mass vaccination.

13.
J Viral Hepat ; 30(3): 182-194, 2023 03.
Article in English | MEDLINE | ID: mdl-36478630

ABSTRACT

The hepatitis delta virus (HDV) is believed to be a vanishing infection in countries with successful hepatitis B virus (HBV) vaccination programs. We assessed the current status of HDV infection in Tuva, a region of the Russia that has been highly endemic for HBV. The proportion of HDV-infected patients among HBsAg-positive patients in the regional registry in 2020 was 32.7% (786/2401). An analysis of the medical records of 514 HDV patients demonstrated that 37.5% (193/514) had liver cirrhosis at the first doctor's visit, and 7.4% of patients lived in families where another family member had HDV. All HDV patients were infected with genotype HDV-1, 94.5% had HBV genotype D, and 5.5% had genotype A. A serosurvey conducted among 1170 healthy volunteers showed that the average detection rate of HBsAg with anti-HDV was 1.0% (95% CI: 0.57-1.81%). No anti-HDV positive samples were detected in participants aged under 30 years. The HBsAg/anti-HDV positivity rate peaked at 7.4% in patients aged 50-59 years, which was significantly higher than in a similar age cohort surveyed in 2008 (1.6%, p < .0001). A Bayesian analysis showed that HDV circulation in Tuva resulted from two waves of introduction, the first in the 1810s (95% HPD: 1741-1834) from Central Asia, and the second in the 1960s (95% HPD: 1953-1979) from Russia. HBV has a much longer history of circulation in Tuva with the MRCA for the predominant genotype HBV-D dated to 972 (95% HPD: 535-1253) for subtype D1, 1274 (95% HPD: 936-1384) for D2, and 1173 (95% HPD: 1005-1618) for D3. A SkyGrid reconstruction of population dynamics showed an increase in the intensity of HDV spread in recent decades. This situation shows the need for HDV screening and prevention measures among people living with HBV.


Subject(s)
Coinfection , Hepatitis B , Humans , Hepatitis B virus/genetics , Hepatitis B Surface Antigens/genetics , Hepatitis Delta Virus/genetics , Bayes Theorem , Liver Cirrhosis/epidemiology , Genotype , Vaccination , Hepatitis B/epidemiology , Hepatitis B/prevention & control , Hepatitis B/diagnosis , Prevalence
14.
J Immunol Methods ; 512: 113408, 2023 01.
Article in English | MEDLINE | ID: mdl-36565812

ABSTRACT

Serosurveillance and seroprevalence studies should be carried out to monitor vaccine-preventable diseases. Multiplex immunoassay (MIA) systems are useful tools for this purpose, allowing the simultaneous quantitative detection of antibodies in one small serum sample, which presents an advantage over conventional methods, such as enzyme-linked immunosorbent assays (ELISAs). Therefore, we developed a multiplex immunoassay for the measurement of antibodies against seven vaccine-preventable infections (measles, rubella, mumps, tetanus, diphtheria, pertussis and Haemophilus influenza type b (Hib) infection). In our multiplex system, heterologous inhibition generally did not exceed 10%, while homologous inhibition varied between 90 and 98%. The intra- and inter-assay variability was ≤11%. The results of in-house MIA showed satisfactory correlation with commercial ELISAs, with Spearman correlation coefficients from 0.90 to 0.98. At the cut-off values defined for our MIA the serostatus can be determined with high sensitivity (89-100%) and specificity (92-98%). Thus, the developed in-house MIA represents a feasible alternative to conventional ELISAs and could be used for large-scale serosurveillance/seroprevalence studies of vaccine-preventable diseases.


Subject(s)
Vaccine-Preventable Diseases , Humans , Seroepidemiologic Studies , Antibodies, Bacterial , Immunoglobulin G , Immunoassay/methods , Antibodies, Viral
15.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38256869

ABSTRACT

The spread of COVID-19 infection continues due to the emergence of multiple transmissible and immune-evasive variants of the SARS-CoV-2 virus. Although various vaccines have been developed and several drugs have been approved for the treatment of COVID-19, the development of new drugs to combat COVID-19 is still necessary. In this work, new 5'-O-ester derivatives of N4-hydroxycytidine based on carboxylic acids were developed and synthesized by Steglich esterification. The antiviral activity of the compounds was assessed in vitro-inhibiting the cytopathic effect of HCoV-229E, and three variants of SARS-CoV-2, on huh-7 and Vero E6 cells. Data have shown that most synthesized derivatives exhibit high activity against coronaviruses. In addition, the relationship between the chemical structure of the compounds and their antiviral effect has been established. The obtained results show that the most active compound was conjugate SN_22 based on 3-methyl phenoxyacetic acid. The results of this study indicate the potential advantage of the chemical strategies used to modify NHC as a promising avenue to be explored in vivo, which could lead to the development of drugs with improved pharmacological properties that potently inhibit SARS-CoV-2.

16.
Int J Mol Sci ; 23(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36498998

ABSTRACT

Findings collected over two and a half years of the COVID-19 pandemic demonstrated that the level immunity resulting from vaccination and infection is insufficient to stop the circulation of new genetic variants. The short-term decline in morbidity was followed by a steady increase. The early identification of new genetic lineages that will require vaccine adaptation in the future is an important research target. In this study, we summarised data on the variability of genetic line composition throughout the COVID-19 pandemic in Moscow, Russia, and evaluated the virological and epidemiological features of dominant variants in the context of selected vaccine prophylaxes. The prevalence of the Omicron variant highlighted the low effectiveness of the existing immune layer in preventing infection, which points to the necessity of optimising the antigens used in vaccines in Moscow. Logistic growth curves showing the rate at which the new variant displaces the previously dominant variants may serve as early indicators for selecting candidates for updated vaccines, along with estimates of efficacy, reduced viral neutralising activity against the new strains, and viral load in previously vaccinated patients.


Subject(s)
COVID-19 , Vaccines , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics
17.
Front Immunol ; 13: 1023164, 2022.
Article in English | MEDLINE | ID: mdl-36466896

ABSTRACT

WHO has declared the outbreak of monkeypox as a public health emergency of international concern. In less than three months, monkeypox was detected in more than 30 000 people and spread to more than 80 countries around the world. It is believed that the immunity formed to smallpox vaccine can protect from monkeypox infection with high efficiency. The widespread use of Vaccinia virus has not been carried out since the 1980s, which raises the question of the level of residual immunity among the population and the identification of groups requiring priority vaccination. We conducted a cross-sectional serological study of remaining immunity among Moscow residents. To do this, a collection of blood serum samples of age group over 30 years old was formed, an in-house ELISA test system was developed, and a virus neutralization protocol was set up. Serum samples were examined for the presence of IgG antibodies against Vaccinia virus (n=2908), as well as for the ability to neutralize plaque formation with a Vaccinia virus MNIIVP-10 strain (n=299). The results indicate the presence of neutralizing antibody titer of 1/20 or more in 33.3 to 53.2% of people older than 45 years. Among people 30-45 years old who probably have not been vaccinated, the proportion with virus neutralizing antibodies ranged from 3.2 to 6.7%. Despite the higher level of antibodies in age group older than 66 years, the proportion of positive samples in this group was slightly lower than in people aged 46-65 years. The results indicate the priority of vaccination in groups younger than 45, and possibly older than 66 years to ensure the protection of the population in case of spread of monkeypox among Moscow residents. The herd immunity level needed to stop the circulation of the virus should be at least 50.25 - 65.28%.


Subject(s)
Communicable Diseases , Mpox (monkeypox) , Orthopoxvirus , Humans , Adult , Middle Aged , Monkeypox virus , Cross-Sectional Studies , Moscow/epidemiology , Vaccinia virus , Antibodies, Neutralizing
18.
Vaccines (Basel) ; 10(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36366311

ABSTRACT

Medical personnel are a group of people that often encounter infectious agents, leading to greater risk of contracting infectious diseases. Specific prevention of diseases in this group is a priority. The epidemiological effectiveness of COVID-19 prevention in the group of medical workers due to the emergence of new variants of concern of the SARS-CoV-2 virus has not been studied in sufficient depth. We conducted a study of the effectiveness of vaccine use to protect medical workers at a large medical center for obstetrics and gynecology in Moscow. Sputnik V and Sputnik Light were the main vaccines used for the prevention of COVID-19. The vaccines are based on a variant of the S-protein of the SARS-CoV-2 virus, with adenovirus serotypes 5 and 26 as the vector for delivery. Vaccination of employees occurred during the period in which the Delta variant was spreading. The overall epidemiological effectiveness was 81.7% (73.1-87.6%) during the period in which the Delta variant was dominant. During the period from the beginning of vaccination (26 November 2020) until 8 February 2022, the overall effectiveness was 89.1% (86.9-91.0%). As expected, the highest effectiveness during this period was obtained in the group that received the third and fourth doses-96.5% (75.0-99.5%). The severity of COVID-19 in the vaccinated group was significantly lower than in the unvaccinated group.

19.
Int J Mol Sci ; 23(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36077564

ABSTRACT

Despite the widespread use of the COVID-19 vaccines, the search for effective antiviral drugs for the treatment of patients infected with SARS-CoV-2 is still relevant. Genetic variability leads to the continued circulation of new variants of concern (VOC). There is a significant decrease in the effectiveness of antibody-based therapy, which raises concerns about the development of new antiviral drugs with a high spectrum of activity against VOCs. We synthesized new analogs of uracil derivatives where uracil was substituted at the N1 and N3 positions. Antiviral activity was studied in Vero E6 cells against VOC, including currently widely circulating SARS-CoV-2 Omicron. All synthesized compounds of the panel showed a wide antiviral effect. In addition, we determined that these compounds inhibit the activity of recombinant SARS-CoV-2 RdRp. Our study suggests that these non-nucleoside uracil-based analogs may be of future use as a treatment for patients infected with circulating SARS-CoV-2 variants.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , COVID-19 Vaccines , Humans , Uracil/pharmacology
20.
Hum Vaccin Immunother ; 18(6): 2101334, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-35914217

ABSTRACT

The article highlights the course of long-term SARS-CoV-2 infection in a patient with a secondary immunodeficiency developed with B-cell-depleting therapy of the underlying disease. Analysis of the intrapatient virus evolution revealed an inpatient S:G75A mutation that alters the 72GTNGTKR78 motif of the S-protein, with a possible role in binding to alternative cellular receptors. Therapy with a ready-made COVID-19-globulin preparation (native human immunoglobulin G (IgG) derived from the plasma of convalescent COVID-19-patients) resulted in rapid improvement of the patient's condition, fast, and stable elimination of the virus, and passive immunization of the patient for at least 30 days. The results suggest the use of products containing neutralizing antibodies opens new prospects for treatment algorithms for patients with persistent coronavirus infection, as well as for passive immunization schemes for patients with a presumably reduced specific response to vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibodies, Viral , Immunization, Passive/methods , Antibodies, Neutralizing
SELECTION OF CITATIONS
SEARCH DETAIL
...