Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 142(22): 224308, 2015 Jun 14.
Article in English | MEDLINE | ID: mdl-26071711

ABSTRACT

Fullerene C60 sub-colloidal particle with diameter ∼1 nm represents a boundary case between small and large hydrophobic solutes on the length scale of hydrophobic hydration. In the present paper, a molecular dynamics simulation is performed to investigate this complex phenomenon for bare C60 fullerene and its amphiphilic/charged derivatives, so called shape amphiphiles. Since most of the unique properties of water originate from the pattern of hydrogen bond network and its dynamics, spatial, and orientational aspects of water in solvation shells around the solute surface having hydrophilic and hydrophobic regions are analyzed. Dynamical properties such as translational-rotational mobility, reorientational correlation and occupation time correlation functions of water molecules, and diffusion coefficients are also calculated. Slower dynamics of solvent molecules­water retardation­in the vicinity of the solutes is observed. Both the topological properties of hydrogen bond pattern and the "dangling" -OH groups that represent surface defects in water network are monitored. The fraction of such defect structures is increased near the hydrophobic cap of fullerenes. Some "dry" regions of C60 are observed which can be considered as signatures of surface dewetting. In an effort to provide molecular level insight into the thermodynamics of hydration, the free energy of solvation is determined for a family of fullerene particles using thermodynamic integration technique.

2.
J Chem Phys ; 141(14): 144303, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25318718

ABSTRACT

Extensive full-atomistic molecular dynamics simulations are performed to study the self-organization of C60-fullerene dyad molecules in water, namely phenyl-C61-butyric acid methyl ester and fulleropyrrolidines, which have two elements of ordering, the hydrophobic fullerene cage and the hydrophilic/ionic group. While pristine fullerene or phenyl-C61-butyric acid methyl ester forms spherical droplets in order to minimize the surface tension, the amphiphilic nature of charged solute molecules leads to the formation of supramolecular assemblies having cylindrical shape driven by charge repulsion between the ionic groups located on the surface of the aggregates. We show that formation of non-spherical micelles is the geometrical consequence if the fullerene derivatives are considered as surfactants where the ionized groups are only hydrophilic unit. The agglomeration behavior of fullerenes is evaluated by determining sizes of the clusters, solvent accessible surface areas, and shape parameters. By changing the size of the counterions from chloride over iodide to perchlorate we find a thickening of the cylinder-like structures which can be explained by stronger condensation of larger ions and thus partial screening of the charge repulsion on the cluster surface. The reason for the size dependence of counterion condensation is the formation of a stronger hydration shell in case of small ions which in turn are repelled from the fullerene aggregates. Simulations are also in good agreement with the experimentally observed morphologies of decorated C60-nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...