Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(42): 16822-16830, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36205420

ABSTRACT

Complex oxides that adopt the isometric spinel structure (AB2O4) are important for numerous technological applications and are relevant for certain geological processes, which involve exposure to extreme environments such as high pressures and temperatures. Recent studies have shown that the changes to the spinel structure caused by these environments are complex and depend on the material length scale under consideration. In this study, we have expanded this approach to the behavior of spinels under high temperatures. In situ neutron total scattering experiments, coupled with pair distribution function analysis, performed on two spinel compositions with various levels of pre-existing disorder (MgAl2O4 and NiAl2O4) revealed that both compositions trend to a state of maximum disorder where the A and B cations are randomly distributed among the two available sites. Temperature-induced cation inversion, conventionally understood as an exchange of cations on the A and B sites, is locally expressed as an atomic rearrangement to a tetragonal symmetry, a correlation that is retained up to the maximum temperature studied (1000 °C). A complex thermal expansion behavior is revealed wherein the oxide materials expand heterogeneously at the level of coordination polyhedra with an apparent dependence on bond strength.

2.
RSC Adv ; 10(57): 34632-34650, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-35514412

ABSTRACT

Pyrochlore (A2B2O7) is an important, isometric structure-type because of its large variety of compositions and structural derivatives that are generally related to different disordering mechanisms at various spatial scales. The disordering is key to understanding variations in properties, such as magnetic behavior or ionic conduction. Neutron and X-ray total scattering methods were used to investigate the degree of structural disorder in the Ho2Ti2-x Zr x O7 (x = 0.0-2.0, Δx = 0.25) solid solution series as a function of the Zr-content, x. Ordered pyrochlores (Fd3̄m) disorder to defect fluorite (Fm3̄m) via cation and anion disordering. Total scattering experiments with sensitivity to the cation and anion sublattices provide unique insight into the underlying atomic processes. Using simultaneous Rietveld refinement (long-range structure) and small-box refinement PDF analysis (short-range structure), we show that the series undergoes a rapid transformation from pyrochlore to defect fluorite at x ≈ 1.2, while the short-range structure exhibits a linear increase in a local weberite-type phase, C2221, over the entire composition range. Enthalpies of formation from the oxides determined using high temperature oxide melt solution calorimetry support the structural data and provide insight into the effect of local ordering on the energetics of disorder. The measured enthalpies of mixing are negative and are fit by a regular solution parameter of W = -31.8 ± 3.7 kJ mol-1. However, the extensive short-range ordering determined from the structural analysis strongly suggests that the entropies of mixing must be far less positive than implied by the random mixing of a regular solution. We propose a local disordering scheme involving the pyrochlore 48f to 8a site oxygen Frenkel defect that creates 7-coordinated Zr sites contained within local weberite-type coherent nanodomains. Thus, the solid solution is best described as a mixture of two phases, with the weberite-type nanodomains triggering the long-range structural transformation to defect fluorite after accumulation above a critical concentration (50% Ti replaced by Zr).

SELECTION OF CITATIONS
SEARCH DETAIL
...