Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Theor Appl Genet ; 119(4): 695-704, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19529908

ABSTRACT

Rye is a diploid crop species with many outstanding qualities, and is important as a source of new traits for wheat and triticale improvement. Rye is highly tolerant of aluminum (Al) toxicity, and possesses a complex structure at the Alt4 Al tolerance locus not found at the corresponding locus in wheat. Here we describe a BAC library of rye cv. Blanco, representing a valuable resource for rye molecular genetic studies, and assess the library's suitability for investigating Al tolerance genes. The library provides 6 x genome coverage of the 8.1 Gb rye genome, has an average insert size of 131 kb, and contains only ~2% of empty or organelle-derived clones. Genetic analysis attributed the Al tolerance of Blanco to the Alt4 locus on the short arm of chromosome 7R, and revealed the presence of multiple allelic variants (haplotypes) of the Alt4 locus in the BAC library. BAC clones containing ALMT1 gene clusters from several Alt4 haplotypes were identified, and will provide useful starting points for exploring the basis for the structural variability and functional specialization of ALMT1 genes at this locus.


Subject(s)
Adaptation, Physiological/genetics , Aluminum/pharmacology , Chromosomes, Artificial, Bacterial/genetics , Genes, Plant , Genomic Library , Physical Chromosome Mapping/methods , Secale/genetics , Adaptation, Physiological/drug effects , Blotting, Southern , Chromosomes, Plant/genetics , Contig Mapping , DNA Probes/metabolism , DNA, Plant/genetics , Genetic Markers , Haplotypes , Multigene Family , Secale/drug effects
2.
Genetics ; 179(1): 669-82, 2008 May.
Article in English | MEDLINE | ID: mdl-18493079

ABSTRACT

Aluminum toxicity is a major problem in agriculture worldwide. Among the cultivated Triticeae, rye (Secale cereale L.) is one of the most Al tolerant and represents an important potential source of Al tolerance for improvement of wheat. The Alt4 Al-tolerance locus of rye contains a cluster of genes homologous to the single-copy Al-activated malate transporter (TaALMT1) Al-tolerance gene of wheat. Tolerant (M39A-1-6) and intolerant (M77A-1) rye haplotypes contain five and two genes, respectively, of which two (ScALMT1-M39.1 and ScALMT1-M39.2) and one (ScALMT1-M77.1) are highly expressed in the root tip, typically the main site of plant Al tolerance/susceptibility. All three transcripts are upregulated by exposure to Al. High-resolution genetic mapping identified two resistant lines resulting from recombination within the gene cluster. These recombinants exclude all genes flanking the gene cluster as candidates for controlling Alt4 tolerance, including a homolog of the barley HvMATE Al-tolerance gene. In the recombinants, one hybrid gene containing a chimeric open reading frame and the ScALMT1-M39.1 gene each appeared to be sufficient to provide full tolerance. mRNA splice variation was observed for two of the rye ALMT1 genes and in one case, was correlated with a approximately 400-bp insertion in an intron.


Subject(s)
Aluminum/toxicity , Drug Tolerance/genetics , Multigene Family/genetics , Organic Anion Transporters/genetics , Secale/genetics , Base Sequence , Blotting, Southern , Breeding/methods , Chromosome Mapping , Haplotypes/genetics , Models, Genetic , Molecular Sequence Data , Organic Anion Transporters/metabolism , Sequence Analysis, DNA
3.
Genome ; 49(5): 531-44, 2006 May.
Article in English | MEDLINE | ID: mdl-16767178

ABSTRACT

The US Wheat Genome Project, funded by the National Science Foundation, developed the first large public Triticeae expressed sequence tag (EST) resource. Altogether, 116,272 ESTs were produced, comprising 100,674 5' ESTs and 15 598 3' ESTs. These ESTs were derived from 42 cDNA libraries, which were created from hexaploid bread wheat (Triticum aestivum L.) and its close relatives, including diploid wheat (T. monococcum L. and Aegilops speltoides L.), tetraploid wheat (T. turgidum L.), and rye (Secale cereale L.), using tissues collected from various stages of plant growth and development and under diverse regimes of abiotic and biotic stress treatments. ESTs were assembled into 18,876 contigs and 23,034 singletons, or 41,910 wheat unigenes. Over 90% of the contigs contained fewer than 10 EST members, implying that the ESTs represented a diverse selection of genes and that genes expressed at low and moderate to high levels were well sampled. Statistical methods were used to study the correlation of gene expression patterns, based on the ESTs clustered in the 1536 contigs that contained at least 10 5' EST members and thus representing the most abundant genes expressed in wheat. Analysis further identified genes in wheat that were significantly upregulated (p < 0.05) in tissues under various abiotic stresses when compared with control tissues. Though the function annotation cannot be assigned for many of these genes, it is likely that they play a role associated with the stress response. This study predicted the possible functionality for 4% of total wheat unigenes, which leaves the remaining 96% with their functional roles and expression patterns largely unknown. Nonetheless, the EST data generated in this project provide a diverse and rich source for gene discovery in wheat.


Subject(s)
Expressed Sequence Tags , Gene Expression Profiling , Triticum/genetics , Triticum/metabolism , Cluster Analysis , Contig Mapping , Data Collection , Databases, Genetic , Gene Library , Genes, Plant , Phylogeny , Polyploidy , Tissue Distribution , Triticum/growth & development
4.
Genome ; 49(10): 1324-40, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17218960

ABSTRACT

To gain insights into the structure and function of the wheat (Triticum aestivum L.) genomes, we identified 278 ESTs related to abiotic stress (cold, heat, drought, salinity, and aluminum) from 7671 ESTs previously mapped to wheat chromosomes. Of the 278 abiotic stress related ESTs, 259 (811 loci) were assigned to chromosome deletion bins and analyzed for their distribution pattern among the 7 homoeologous chromosome groups. Distribution of abiotic stress related EST loci were not uniform throughout the different regions of the chromosomes of the 3 wheat genomes. Both the short and long arms of group 4 chromosomes showed a higher number of loci in their distal regions compared with proximal regions. Of the 811 loci, the number of mapped loci on the A, B, and D genomes were 258, 281, and 272, respectively. The highest number of abiotic stress related loci were found in homoeologous chromosome group 2 (142 loci) and the lowest number were found in group 6 (94 loci). When considering the genome-specific ESTs, the B genome showed the highest number of unique ESTs (7 loci), while none were found in the D genome. Similarly, considering homoeologous group-specific ESTs, group 2 showed the highest number with 16 unique ESTs (58 loci), followed by group 4 with 9 unique ESTs (33 loci). Many of the classified proteins fell into the biological process categories associated with metabolism, cell growth, and cell maintenance. Most of the mapped ESTs fell into the category of enzyme activity (28%), followed by binding activity (27%). Enzymes related to abiotic stress such as beta-galactosidase, peroxidase, glutathione reductase, and trehalose-6-phosphate synthase were identified. The comparison of stress-responsive ESTs with genomic sequences of rice (Oryza sativa L.) chromosomes revealed the complexities of colinearity. This bin map provides insight into the structural and functional details of wheat genomic regions in relation to abiotic stress.


Subject(s)
Adaptation, Physiological/genetics , Expressed Sequence Tags , Genome, Plant/genetics , Triticum/genetics , Aluminum/toxicity , Cold Temperature , Heating , Osmotic Pressure , Physical Chromosome Mapping , Salts/pharmacology , Triticum/drug effects
5.
Cytogenet Genome Res ; 109(1-3): 236-49, 2005.
Article in English | MEDLINE | ID: mdl-15753583

ABSTRACT

Allopolyploidy is a prominent mode of speciation in higher plants. Due to the coexistence of closely related genomes, a successful allopolyploid must have the ability to invoke and maintain diploid-like behavior, both cytologically and genetically. Recent studies on natural and synthetic allopolyploids have raised many discrepancies. Most species have displayed non-Mendelian behavior in the allopolyploids, but others have not. Some species have demonstrated rapid genome changes following allopolyploid formation, while others have conserved progenitor genomes. Some have displayed directed, non-random genome changes, whereas others have shown random changes. Some of the genomic changes have appeared in the F1 hybrids, which have been attributed to the union of gametes from different progenitors, while other changes have occurred during or after genome doubling. Although these observations provide significant novel insights into the evolution of allopolyploids, the overall mechanisms of the event are still elusive. It appears that both genetic and epigenetic operations are involved in the diploidization process of allopolyploids. Overall, genetic and epigenetic variations are often associated with the activities of repetitive sequences and transposon elements. Specifically, genomic sequence elimination and chromosome rearrangement are probably the major forces guiding cytological diploidization. Gene non-functionalization, sub-functionalization, neo-functionalization, as well as other kinds of epigenetic modifications, are likely the leading factors promoting genetic diploidization.


Subject(s)
Chromosomes, Plant/genetics , Genes, Plant , Genome, Plant , Plants/genetics , Polyploidy , Diploidy , Gene Duplication
6.
Theor Appl Genet ; 110(5): 906-13, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15688201

ABSTRACT

Characterization and manipulation of aluminum (Al) tolerance genes offers a solution to Al toxicity problems in crop cultivation on acid soil, which composes approximately 40% of all arable land. By exploiting the rice (Oryza sativa L.)/rye (Secale cereale L.) syntenic relationship, the potential for map-based cloning of genes controlling Al tolerance in rye (the most Al-tolerant cereal) was explored. An attempt to clone an Al tolerance gene (Alt3) from rye was initiated by using DNA markers flanking the rye Alt3 gene, from many cereals. Two rice-derived, PCR-based markers flanking the Alt3 gene, B1 and B4, were used to screen 1,123 plants of a rye F2 population segregating for Alt3. Fifteen recombinant plants were identified. Four additional RFLP markers developed from rice genes/putative genes, spanning 10 kb of a 160-kb rice BAC, were mapped to the Alt3 region. Two rice markers flanked the Alt3 locus at a distance of 0.05 cM, while two others co-segregated with it. The rice/rye micro-colinearity worked very well to delineate and map the Alt3 gene region in rye. A rye fragment suspected to be part of the Alt3 candidate gene was identified, but at this level, the rye/rice microsynteny relationship broke down. Because of sequence differences between rice and rye and the complexity of the rye sequence, we have been unable to clone a full-length candidate gene in rye. Further attempts to clone a full-length rye Alt3 candidate gene will necessitate the creation of a rye large-insert library.


Subject(s)
Chromosome Mapping , Oryza/genetics , Secale/genetics , Synteny/genetics , Aluminum/toxicity , Blotting, Northern , Blotting, Southern , Crosses, Genetic , DNA Primers , Drug Resistance/genetics , Genetic Markers/genetics , Polymorphism, Restriction Fragment Length
7.
Genome ; 48(5): 792-801, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16391685

ABSTRACT

Amplified fragment length polymorphism (AFLP) data were utilized to analyze the phylogenetic relationships among 29 accessions representing 14 of the most commonly recognized ranked species or subspecies in the genus Secale. We observed 789 AFLP markers of 1130 fragments utilizing 18 P-/M- and E-/M- primer combinations. All polymorphic fragments were used to construct phenetic and phylogenetic trees. The resulting phenogram and cladogram had similar tree topologies. Cluster analysis showed that Secale sylvestre was the most distantly related to all other ryes. Annual forms were grouped together, and the perennial forms appeared more closely related to each other. This suggested that life cycle could have played an important role in determining the relationships among Secale species. Secale sylvestre was considered to be the most ancient species, whereas Secale cereale was the most recently evolved species. Amplified fragment length polymorphism analysis clearly separated all Secale species into only 3 major species groups, within the genus Secale: S. sylvestre, Secale montanum (syn. Secale strictum) for perennial forms, and S. cereale for annual forms. This study demonstrated that the AFLP approach is a useful tool for discriminating species differences, and also gave a much better resolution in discerning genetic relationships among Secale species as compared with previous studies using other approaches.


Subject(s)
Edible Grain/classification , Polymorphism, Genetic , Random Amplified Polymorphic DNA Technique , Secale/classification , Edible Grain/genetics , Phylogeny , Secale/genetics
8.
Genetics ; 168(2): 585-93, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514037

ABSTRACT

This report describes the rationale, approaches, organization, and resource development leading to a large-scale deletion bin map of the hexaploid (2n = 6x = 42) wheat genome (Triticum aestivum L.). Accompanying reports in this issue detail results from chromosome bin-mapping of expressed sequence tags (ESTs) representing genes onto the seven homoeologous chromosome groups and a global analysis of the entire mapped wheat EST data set. Among the resources developed were the first extensive public wheat EST collection (113,220 ESTs). Described are protocols for sequencing, sequence processing, EST nomenclature, and the assembly of ESTs into contigs. These contigs plus singletons (unassembled ESTs) were used for selection of distinct sequence motif unigenes. Selected ESTs were rearrayed, validated by 5' and 3' sequencing, and amplified for probing a series of wheat aneuploid and deletion stocks. Images and data for all Southern hybridizations were deposited in databases and were used by the coordinators for each of the seven homoeologous chromosome groups to validate the mapping results. Results from this project have established the foundation for future developments in wheat genomics.


Subject(s)
Chromosome Mapping , Computational Biology , Contig Mapping , Expressed Sequence Tags/chemistry , Gene Deletion , Triticum/genetics , Blotting, Southern , DNA Probes , Gene Library
9.
Genetics ; 168(2): 595-608, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514038

ABSTRACT

A total of 37 original cDNA libraries and 9 derivative libraries enriched for rare sequences were produced from Chinese Spring wheat (Triticum aestivum L.), five other hexaploid wheat genotypes (Cheyenne, Brevor, TAM W101, BH1146, Butte 86), tetraploid durum wheat (T. turgidum L.), diploid wheat (T. monococcum L.), and two other diploid members of the grass tribe Triticeae (Aegilops speltoides Tausch and Secale cereale L.). The emphasis in the choice of plant materials for library construction was reproductive development subjected to environmental factors that ultimately affect grain quality and yield, but roots and other tissues were also included. Partial cDNA expressed sequence tags (ESTs) were examined by various measures to assess the quality of these libraries. All ESTs were processed to remove cloning system sequences and contaminants and then assembled using CAP3. Following these processing steps, this assembly yielded 101,107 sequences derived from 89,043 clones, which defined 16,740 contigs and 33,213 singletons, a total of 49,953 "unigenes." Analysis of the distribution of these unigenes among the libraries led to the conclusion that the enrichment methods were effective in reducing the most abundant unigenes and to the observation that the most diverse libraries were from tissues exposed to environmental stresses including heat, drought, salinity, or low temperature.


Subject(s)
Expressed Sequence Tags/chemistry , Gene Library , Triticum/genetics , Genetic Vectors , Sequence Analysis, DNA , Subtraction Technique
10.
Genetics ; 168(2): 609-23, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514039

ABSTRACT

A total of 944 expressed sequence tags (ESTs) generated 2212 EST loci mapped to homoeologous group 1 chromosomes in hexaploid wheat (Triticum aestivum L.). EST deletion maps and the consensus map of group 1 chromosomes were constructed to show EST distribution. EST loci were unevenly distributed among chromosomes 1A, 1B, and 1D with 660, 826, and 726, respectively. The number of EST loci was greater on the long arms than on the short arms for all three chromosomes. The distribution of ESTs along chromosome arms was nonrandom with EST clusters occurring in the distal regions of short arms and middle regions of long arms. Duplications of group 1 ESTs in other homoeologous groups occurred at a rate of 35.5%. Seventy-five percent of wheat chromosome 1 ESTs had significant matches with rice sequences (E < or = e(-10)), where large regions of conservation occurred between wheat consensus chromosome 1 and rice chromosome 5 and between the proximal portion of the long arm of wheat consensus chromosome 1 and rice chromosome 10. Only 9.5% of group 1 ESTs showed significant matches to Arabidopsis genome sequences. The results presented are useful for gene mapping and evolutionary and comparative genomics of grasses.


Subject(s)
Arabidopsis/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Expressed Sequence Tags , Oryza/genetics , Ploidies , Triticum/genetics , Genes, Plant , Genome, Plant , Sequence Alignment
11.
Genetics ; 168(2): 639-50, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514041

ABSTRACT

The focus of this study was to analyze the content, distribution, and comparative genome relationships of 996 chromosome bin-mapped expressed sequence tags (ESTs) accounting for 2266 restriction fragments (loci) on the homoeologous group 3 chromosomes of hexaploid wheat (Triticum aestivum L.). Of these loci, 634, 884, and 748 were mapped on chromosomes 3A, 3B, and 3D, respectively. The individual chromosome bin maps revealed bins with a high density of mapped ESTs in the distal region and bins of low density in the proximal region of the chromosome arms, with the exception of 3DS and 3DL. These distributions were more localized on the higher-resolution group 3 consensus map with intermediate regions of high-mapped-EST density on both chromosome arms. Gene ontology (GO) classification of mapped ESTs was not significantly different for homoeologous group 3 chromosomes compared to the other groups. A combined analysis of the individual bin maps using 537 of the mapped ESTs revealed rearrangements between the group 3 chromosomes. Approximately 232 (44%) of the consensus mapped ESTs matched sequences on rice chromosome 1 and revealed large- and small-scale differences in gene order. Of the group 3 mapped EST unigenes approximately 21 and 32% matched the Arabidopsis coding regions and proteins, respectively, but no chromosome-level gene order conservation was detected.


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Genes, Plant , Oryza/genetics , Triticum/genetics , Genome, Plant , Sequence Alignment
12.
Genetics ; 168(2): 625-37, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514040

ABSTRACT

The complex hexaploid wheat genome offers many challenges for genomics research. Expressed sequence tags facilitate the analysis of gene-coding regions and provide a rich source of molecular markers for mapping and comparison with model organisms. The objectives of this study were to construct a high-density EST chromosome bin map of wheat homoeologous group 2 chromosomes to determine the distribution of ESTs, construct a consensus map of group 2 ESTs, investigate synteny, examine patterns of duplication, and assess the colinearity with rice of ESTs assigned to the group 2 consensus bin map. A total of 2600 loci generated from 1110 ESTs were mapped to group 2 chromosomes by Southern hybridization onto wheat aneuploid chromosome and deletion stocks. A consensus map was constructed of 552 ESTs mapping to more than one group 2 chromosome. Regions of high gene density in distal bins and low gene density in proximal bins were found. Two interstitial gene-rich islands flanked by relatively gene-poor regions on both the short and long arms and having good synteny with rice were discovered. The map locations of two ESTs indicated the possible presence of a small pericentric inversion on chromosome 2B. Wheat chromosome group 2 was shown to share syntenous blocks with rice chromosomes 4 and 7.


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Genes, Plant , Oryza/genetics , Triticum/genetics , Genome, Plant , Ploidies , Sequence Alignment
13.
Genetics ; 168(2): 651-63, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514042

ABSTRACT

A total of 1918 loci, detected by the hybridization of 938 expressed sequence tag unigenes (ESTs) from 26 Triticeae cDNA libraries, were mapped to wheat (Triticum aestivum L.) homoeologous group 4 chromosomes using a set of deletion, ditelosomic, and nulli-tetrasomic lines. The 1918 EST loci were not distributed uniformly among the three group 4 chromosomes; 41, 28, and 31% mapped to chromosomes 4A, 4B, and 4D, respectively. This pattern is in contrast to the cumulative results of EST mapping in all homoeologous groups, as reported elsewhere, that found the highest proportion of loci mapped to the B genome. Sixty-five percent of these 1918 loci mapped to the long arms of homoeologous group 4 chromosomes, while 35% mapped to the short arms. The distal regions of chromosome arms showed higher numbers of loci than the proximal regions, with the exception of 4DL. This study confirmed the complex structure of chromosome 4A that contains two reciprocal translocations and two inversions, previously identified. An additional inversion in the centromeric region of 4A was revealed. A consensus map for homoeologous group 4 was developed from 119 ESTs unique to group 4. Forty-nine percent of these ESTs were found to be homoeologous to sequences on rice chromosome 3, 12% had matches with sequences on other rice chromosomes, and 39% had no matches with rice sequences at all. Limited homology (only 26 of the 119 consensus ESTs) was found between wheat ESTs on homoeologous group 4 and the Arabidopsis genome. Forty-two percent of the homoeologous group 4 ESTs could be classified into functional categories on the basis of blastX searches against all protein databases.


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Expressed Sequence Tags , Genes, Plant , Triticum/genetics , Gene Deletion , Gene Duplication , Gene Library , Genome, Plant
14.
Genetics ; 168(2): 677-86, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514044

ABSTRACT

To localize wheat (Triticum aestivum L.) ESTs on chromosomes, 882 homoeologous group 6-specific ESTs were identified by physically mapping 7965 singletons from 37 cDNA libraries on 146 chromosome, arm, and sub-arm aneuploid and deletion stocks. The 882 ESTs were physically mapped to 25 regions (bins) flanked by 23 deletion breakpoints. Of the 5154 restriction fragments detected by 882 ESTs, 2043 (loci) were localized to group 6 chromosomes and 806 were mapped on other chromosome groups. The number of loci mapped was greatest on chromosome 6B and least on 6D. The 264 ESTs that detected orthologous loci on all three homoeologs using one restriction enzyme were used to construct a consensus physical map. The physical distribution of ESTs was uneven on chromosomes with a tendency toward higher densities in the distal halves of chromosome arms. About 43% of the wheat group 6 ESTs identified rice homologs upon comparisons of genome sequences. Fifty-eight percent of these ESTs were present on rice chromosome 2 and the remaining were on other rice chromosomes. Even within the group 6 bins, rice chromosomal blocks identified by 1-6 wheat ESTs were homologous to up to 11 rice chromosomes. These rice-block contigs were used to resolve the order of wheat ESTs within each bin.


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Gene Deletion , Genes, Plant , Triticum/genetics , Expressed Sequence Tags , Gene Library , Genome, Plant , Sequence Alignment
15.
Genetics ; 168(2): 665-76, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514043

ABSTRACT

We constructed high-density deletion bin maps of wheat chromosomes 5A, 5B, and 5D, including 2338 loci mapped with 1052 EST probes and 217 previously mapped loci (total 2555 loci). This information was combined to construct a consensus chromosome bin map of group 5 including 24 bins. A relatively higher number of loci were mapped on chromosome 5B (38%) compared to 5A (34%) and 5D (28%). Differences in the levels of polymorphism among the three chromosomes were partially responsible for these differences. A higher number of duplicated loci was found on chromosome 5B (42%). Three times more loci were mapped on the long arms than on the short arms, and a significantly higher number of probes, loci, and duplicated loci were mapped on the distal halves than on the proximal halves of the chromosome arms. Good overall colinearity was observed among the three homoeologous group 5 chromosomes, except for the previously known 5AL/4AL translocation and a putative small pericentric inversion in chromosome 5A. Statistically significant colinearity was observed between low-copy-number ESTs from wheat homoeologous group 5 and rice chromosomes 12 (88 ESTs), 9 (72 ESTs), and 3 (84 ESTs).


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Genes, Plant , Oryza/genetics , Triticum/genetics , Expressed Sequence Tags , Genome, Plant , Sequence Alignment
16.
Genetics ; 168(2): 687-99, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514045

ABSTRACT

The objectives of this study were to develop a high-density chromosome bin map of homoeologous group 7 in hexaploid wheat (Triticum aestivum L.), to identify gene distribution in these chromosomes, and to perform comparative studies of wheat with rice and barley. We mapped 2148 loci from 919 EST clones onto group 7 chromosomes of wheat. In the majority of cases the numbers of loci were significantly lower in the centromeric regions and tended to increase in the distal regions. The level of duplicated loci in this group was 24% with most of these loci being localized toward the distal regions. One hundred nineteen EST probes that hybridized to three fragments and mapped to the three group 7 chromosomes were designated landmark probes and were used to construct a consensus homoeologous group 7 map. An additional 49 probes that mapped to 7AS, 7DS, and the ancestral translocated segment involving 7BS also were designated landmarks. Landmark probe orders and comparative maps of wheat, rice, and barley were produced on the basis of corresponding rice BAC/PAC and genetic markers that mapped on chromosomes 6 and 8 of rice. Identification of landmark ESTs and development of consensus maps may provide a framework of conserved coding regions predating the evolution of wheat genomes.


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Expressed Sequence Tags , Genes, Plant , Triticum/genetics , Gene Deletion , Gene Duplication , Genetic Markers , Genome, Plant , Hordeum/genetics , Oryza/genetics , Sequence Alignment
17.
Genetics ; 168(2): 701-12, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15514046

ABSTRACT

Because of the huge size of the common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) genome of 17,300 Mb, sequencing and mapping of the expressed portion is a logical first step for gene discovery. Here we report mapping of 7104 expressed sequence tag (EST) unigenes by Southern hybridization into a chromosome bin map using a set of wheat aneuploids and deletion stocks. Each EST detected a mean of 4.8 restriction fragments and 2.8 loci. More loci were mapped in the B genome (5774) than in the A (5173) or D (5146) genomes. The EST density was significantly higher for the D genome than for the A or B. In general, EST density increased relative to the physical distance from the centromere. The majority of EST-dense regions are in the distal parts of chromosomes. Most of the agronomically important genes are located in EST-dense regions. The chromosome bin map of ESTs is a unique resource for SNP analysis, comparative mapping, structural and functional analysis, and polyploid evolution, as well as providing a framework for constructing a sequence-ready, BAC-contig map of the wheat genome.


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Expressed Sequence Tags , Genes, Plant , Genome, Plant , Triticum/genetics , Genetic Markers , Ploidies , Quantitative Trait Loci , Sequence Alignment
18.
Genome ; 47(2): 231-8, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15060575

ABSTRACT

Aluminum (Al) toxicity is considered to be a major problem for crop growth and production on acid soils. The ability of crops to overcome Al toxicity varies among crop species and cultivars. Rye (Secale cereale L.) is the most Al-tolerant species among the Triticeae. Our previous study showed that Al tolerance in a rye F6 recombinant inbred line (RIL) population was controlled by a single gene designated as the aluminum tolerance (Alt3) gene on chromosome 4RL. Based on the DNA sequence of a rice (Oryza sativa L.) BAC clone suspected to be syntenic to the Alt3 gene region, we developed two PCR-based codominant markers flanking the gene. These two markers, a sequence-tagged site (STS) marker and a cleaved amplified polymorphic sequence (CAPS) marker, each flanked the Alt3 gene at an approximate distance of 0.4 cM and can be used to facilitate high-resolution mapping of the gene. The markers might also be used for marker-assisted selection in rye or wheat (Triticum aestivum L.) breeding programs to obtain Al-tolerant lines and (or) cultivars.


Subject(s)
Aluminum/toxicity , Genes, Plant , Polymerase Chain Reaction/methods , Secale/genetics , Base Sequence , Breeding , Chromosome Mapping , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Plant/genetics , Drug Resistance , Genetic Linkage , Genetic Markers , Molecular Sequence Data , Oryza/genetics , Secale/drug effects , Sequence Alignment , Sequence Tagged Sites
19.
Genome ; 45(2): 367-80, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11962634

ABSTRACT

Extended flanking DNA sequences were characterized for five members of the wheat high molecular weight (HMW) glutenin gene family to understand more of the structure, control, and evolution of these genes. Analysis revealed more sequence conservation among orthologous regions than between paralogous regions, with differences mainly owing to transposition events involving putative retrotransposons and several miniature inverted transposable elements (MITEs). Both gyspy-like long terminal repeat (LTR) and non-LTR retrotransposon sequences are represented in the flanking DNAs. One of the MITEs is a novel class, but another MITE is related to the maize Stowaway family and is widely represented in Triticeae express sequence tags (ESTs). Flanking DNA of the longest sequence, a 20 425-bp fragment including and surrounding the HMW-glutenin Bx7 gene, showed additional cereal gene-like sequences both immediately 5' and 3' to the HMW-glutenin coding region. The transcriptional activities of sequences related to these flanking putative genes and the retrotransposon-related regions were indicated by matches to wheat and other Triticeae ESTs. Predictive analysis of matrix-attachment regions (MARs) of the HMW glutenin and several alpha-, gamma-, and omega-gliadin flanking DNAs indicate potential MARs immediately flanking each of the genes. Matrix binding activity in the predicted regions was confirmed for two of the HMW-glutenin genes.


Subject(s)
DNA Transposable Elements/genetics , DNA, Plant/genetics , Glutens/analogs & derivatives , Glutens/genetics , Nuclear Matrix/metabolism , Triticum/genetics , 3' Flanking Region/genetics , 5' Flanking Region/genetics , Base Sequence , Cloning, Molecular , Conserved Sequence , Databases, Genetic , Evolution, Molecular , Expressed Sequence Tags , Genes, Plant , Glutens/chemistry , Molecular Sequence Data , Molecular Weight , Sequence Analysis, DNA , Terminal Repeat Sequences , Transcription, Genetic
20.
Genome ; 44(5): 883-92, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11681613

ABSTRACT

The long arm of chromosome 4D in wheat (Triticum aestivum L.) has been shown in previous studies to harbor genes of agronomic importance. A major dominant gene conferring Aluminum (Al) tolerance (Alt2 in 'Chinese Spring' and AltBH in 'BH 1146'), and the Knal locus controlling the K+/Na+ discrimination in saline environments have been mapped to this chromosome arm. However, accurate information on the genetic and physical location of markers related to any of these genes is not available and would be useful for map-based cloning and marker-assisted plant breeding. In the present study, using a population of 91 recombinant inbred lines segregating for Al tolerance, we provide a more extensive genetic linkage map of the chromosome arm 4DL based on RFLP, SSR, and AFLP markers, delimiting the AltBH gene to a 5.9-cM interval between markers Xgdm125 and Xpsr914. In addition, utilizing a set of wheat deletion lines for chromosome arm 4DL, the AltBH gene was physically mapped to the distal region of the chromosome, between deletion breakpoints 0.70 and 0.86, where the kilobase/centimorgan ratio is assumed to be low, making the map-based cloning of the gene a more realistic goal. The polymorphism rates in chromosome arm 4DL for the different types of markers used were extremely low, as confirmed by the physical mapping of AFLPs. Finally, analysis of 1 Mb of contiguous sequence of Arabidopsis chromosome 5 flanking the gene homologous to the BCD1230 clone (a cosegregating marker in our population coding for a ribulose-5-phosphate-3-epimerase gene), revealed a previously identified region of stress-related and disease-resistance genes. This could explain the collinearity observed in comparative mapping studies among different species and the low level of polymorphism detected in the chromosome arm 4DL in hexaploid wheat.


Subject(s)
Chromosome Mapping , Physical Chromosome Mapping , Triticum/genetics , Aluminum/pharmacology , Arabidopsis/genetics , Chromosomes , Drug Resistance/genetics , Genetic Markers , Microsatellite Repeats , Polymerase Chain Reaction , Polymorphism, Genetic , Polymorphism, Restriction Fragment Length , Triticum/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...