Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Theriogenology ; 74(6): 1099-1106, 1106e1-2, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20615536

ABSTRACT

Sperm mRNA transcriptional profiles can be used to evaluate male fertility, yet differences between species in sperm attributes and packaging require adjustments in sperm RNA isolation protocols. The objective was to optimize RNA isolation methodology for fresh, frozen, and extended ejaculates, and epididymal sperm of stallions. Additionally, a protocol for RNA isolation from testis biopsies was established. Separation of sperm from somatic cells was critical for assuring the isolation of sperm-specific RNA. The highest purity was obtained by centrifuging ejaculates and epididymal sperm at 200 x g for 30 min through a 40% Equipure silanized silica particle solution. Sperm RNA isolation was more efficient with TRIzol reagent than with a spin-column based method; it resulted in 2 microg of total RNA per 100 x 10(6) sperm. To evaluate RNA quantity and quality, we used a NanoDrop spectrophotometer and Agilent Bioanalyzer. A protocol for reverse transcriptase PCR with equine primers for PRM2 and PTPRC genes was developed to determine sperm RNA contamination with genomic DNA or RNA from somatic cells. By these methods, hybridization- and sequencing-quality RNA was isolated from 11 samples of stallion sperm. Stallion testis biopsy with a 14 gauge 22 mm deep biopsy needle yielded approximately 12 microg of good quality total RNA, and could serve as an alternative to excision surgery for sample procurement. Compared to RNA isolation from testis, the sperm required advanced processing and RNA quality control. The described methodologies provided a foundation to establish functional genomic studies of stallion fertility.


Subject(s)
Horses , RNA/isolation & purification , Spermatozoa/chemistry , Testis/chemistry , Animals , Biopsy/veterinary , Cryopreservation/methods , Cryopreservation/veterinary , Genetic Techniques , Horses/genetics , Horses/metabolism , Male , Quality Control , RNA/analysis , RNA/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Semen Analysis , Semen Preservation/methods , Semen Preservation/veterinary , Spermatozoa/metabolism , Testis/pathology
2.
BMC Genomics ; 10: 182, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19393056

ABSTRACT

BACKGROUND: The cattle MHC is termed the bovine leukocyte antigen (BoLA) and, along with the MHCs of other ruminants, is unique in its genomic organization. Consequently, correct and reliable gene maps and sequence information are critical to the study of the BoLA region. The bovine genome sequencing project has produced two assemblies (Btau_3.1 and 4.0) that differ substantially from each other and from conventional gene maps in the BoLA region. To independently compare the accuracies of the different sequence assemblies, we have generated a high resolution map of BoLA using a 12,000rad radiation hybrid panel. Seventy-seven unique sequence tagged site (STS) markers chosen at approximately 50 kb intervals from the Btau 2.0 assembly and spanning the IIa-III-I and IIb regions of the bovine MHC were mapped on a 12,000rad bovine radiation hybrid (RH) panel to evaluate the different assemblies of the bovine genome sequence. RESULTS: Analysis of the data generated a high resolution RH map of BoLA that was significantly different from the Btau_3.1 assembly of the bovine genome but in good agreement with the Btau_4.0 assembly. Of the few discordancies between the RH map and Btau_4.0, most could be attributed to closely spaced markers that could not be precisely ordered in the RH panel. One probable incorrectly-assembled sequence and three missing sequences were noted in the Btau_4.0 assembly. The RH map of BoLA is also highly concordant with the sequence-based map of HLA (NCBI build 36) when reordered to account for the ancestral inversion in the ruminant MHC. CONCLUSION: These results strongly suggest that studies using Btau_3.1 for analyses of the BoLA region should be reevaluated in light of the Btau_4.0 assembly and indicate that additional research is needed to produce a complete assembly of the BoLA genomic sequences.


Subject(s)
Cattle/genetics , Chromosomes, Mammalian/genetics , Major Histocompatibility Complex/genetics , Radiation Hybrid Mapping/methods , Animals , Databases, Nucleic Acid , Genetic Markers/genetics , Genome, Human , Genomics/methods , Humans , Reproducibility of Results , Sequence Tagged Sites , Synteny
3.
Genomics ; 85(2): 188-200, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15676277

ABSTRACT

High-resolution gene maps of individual equine chromosomes are essential to identify genes governing traits of economic importance in the horse. In pursuit of this goal we herein report the generation of a dense map of horse chromosome 22 (ECA22) comprising 83 markers, of which 52 represent specific genes and 31 are microsatellites. The map spans 831 cR over an estimated 64 Mb of physical length of the chromosome, thus providing markers at approximately 770 kb or 10 cR intervals. Overall, the resolution of the map is to date the densest in the horse and is the highest for any of the domesticated animal species for which annotated sequence data are not yet available. Comparative analysis showed that ECA22 shares remarkable conservation of gene order along the entire length of dog chromosome 24, something not yet found for an autosome in evolutionarily diverged species. Comparison with human, mouse, and rat homologues shows that ECA22 can be traced as two conserved linkage blocks, each related to individual arms of the human homologue-HSA20. Extending the comparison to the chicken genome showed that one of the ECA22 blocks that corresponds to HSA20q shares synteny conservation with chicken chromosome 20, suggesting the segment to be ancestral in mammals and birds.


Subject(s)
Chromosomes , Horses/genetics , Radiation Hybrid Mapping/methods , Vertebrates/genetics , Animals , Biological Evolution , Chromosomes, Artificial, Bacterial , Gene Order , Humans , In Situ Hybridization, Fluorescence , Mice , Polymerase Chain Reaction/methods , Rats , Sequence Tagged Sites
SELECTION OF CITATIONS
SEARCH DETAIL
...