Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Biosci (Elite Ed) ; 3(4): 1425-42, 2011 06 01.
Article in English | MEDLINE | ID: mdl-21622147

ABSTRACT

Mouse Xin-alpha (mXin-alpha) encodes a Xin repeat-containing, actin-binding protein localized to the intercalated disc (ICD). Ablation of mXin-alpha progressively leads to disrupted ICD structure, cardiac hypertrophy and cardiomyopathy with conduction defects during adulthood. Such conduction defects could be due to ICD structural defects and/or cell electrophysiological property changes. Here, we showed that despite the normal ICD structure, juvenile mXina-null cardiomyocytes (from 3~4-week-old mice) exhibited a significant reduction in the transient outward K+ current (ITO), similar to adult mutant cells. Juvenile but not adult mutant cardiomyocytes also had a significant reduction in the delayed rectifier K+ current. In contrast, the mutant adult ventricular myocytes had a significant reduction in the inward rectifier K+ current (IK1) on hyperpolarization. These together could account for the prolongation of action potential duration (APD) and the ease of developing early afterdepolarization observed in juvenile mXin-alpha-null cells. Interestingly, juvenile mXin-alpha-null cardiomyocytes had a notable decrease in the amplitude of intracellular Ca2+ transient and no change in the L-type Ca2+ current, suggesting that the prolonged APD did not promote an increase in intracellular Ca2+ for cardiac hypertrophy. Juvenile mXin-alpha-null ventricles had reduced levels of membrane-associated Kv channel interacting protein 2, an auxiliary subunit of ITO, and filamin, an actin cross-linking protein. We further showed that mXin-alpha interacted with both proteins, providing a novel mechanism for ITO surface expression.


Subject(s)
Heart Ventricles/metabolism , Muscle Proteins/metabolism , Animals , Base Sequence , Cells, Cultured , DNA Primers , Heart Ventricles/cytology , Heart Ventricles/ultrastructure , Male , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Muscle Proteins/physiology , Reverse Transcriptase Polymerase Chain Reaction , Two-Hybrid System Techniques
2.
Circ Res ; 106(9): 1468-78, 2010 May 14.
Article in English | MEDLINE | ID: mdl-20360251

ABSTRACT

RATIONALE: The Xin repeat-containing proteins mXinalpha and mXinbeta localize to the intercalated disc of mouse heart and are implicated in cardiac development and function. The mXinalpha directly interacts with beta-catenin, p120-catenin, and actin filaments. Ablation of mXinalpha results in adult late-onset cardiomyopathy with conduction defects. An upregulation of the mXinbeta in mXinalpha-deficient hearts suggests a partial compensation. OBJECTIVE: The essential roles of mXinbeta in cardiac development and intercalated disc maturation were investigated. METHODS AND RESULTS: Ablation of mXinbeta led to abnormal heart shape, ventricular septal defects, severe growth retardation, and postnatal lethality with no upregulation of the mXinalpha. Postnatal upregulation of mXinbeta in wild-type hearts, as well as altered apoptosis and proliferation in mXinbeta-null hearts, suggests that mXinbeta is required for postnatal heart remodeling. The mXinbeta-null hearts exhibited a misorganized myocardium as detected by histological and electron microscopic studies and an impaired diastolic function, as suggested by echocardiography and a delay in switching off the slow skeletal troponin I. Loss of mXinbeta resulted in the failure of forming mature intercalated discs and the mislocalization of mXinalpha and N-cadherin. The mXinbeta-null hearts showed upregulation of active Stat3 (signal transducer and activator of transcription 3) and downregulation of the activities of Rac1, insulin-like growth factor 1 receptor, protein kinase B, and extracellular signal-regulated kinases 1 and 2. CONCLUSIONS: These findings identify not only an essential role of mXinbeta in the intercalated disc maturation but also mechanisms of mXinbeta modulating N-cadherin-mediated adhesion signaling and its crosstalk signaling for postnatal heart growth and animal survival.


Subject(s)
DNA-Binding Proteins/metabolism , Heart/growth & development , Heart/physiopathology , Nuclear Proteins/metabolism , Animals , Animals, Newborn , Cell Proliferation , Cell Survival , Cytoskeletal Proteins , DNA-Binding Proteins/deficiency , LIM Domain Proteins , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/deficiency
3.
J Biol Chem ; 282(49): 36024-36, 2007 Dec 07.
Article in English | MEDLINE | ID: mdl-17925400

ABSTRACT

Targeted deletion of mXinalpha results in cardiac hypertrophy and cardiomyopathy with conduction defects (Gustafson-Wagner, E., Sinn, H. W., Chen, Y.-L., Wang, D.-Z., Reiter, R. S., Lin, J. L.-C., Yang, B., Williamson, R. A., Chen, J. N., Lin, C.-I., and Lin, J. J.-C. (2007) Am. J. Physiol. 293, H2680-H2692). To understand the underlying mechanisms leading to such cardiac defects, the functional domains of mXinalpha and its interacting proteins were investigated. Interaction studies using co-immunoprecipitation, pull-down, and yeast two-hybrid assays revealed that mXinalpha directly interacts with beta-catenin. The beta-catenin-binding site on mXinalpha was mapped to amino acids 535-636, which overlaps with the known actin-binding domains composed of the Xin repeats. The overlapping nature of these domains provides insight into the molecular mechanism for mXinalpha localization and function. Purified recombinant glutathione S-transferase- or His-tagged mXinalpha proteins are capable of binding and bundling actin filaments, as determined by co-sedimentation and electron microscopic studies. The binding to actin was saturated at an approximate stoichiometry of nine actin monomers to one mXinalpha. A stronger interaction was observed between mXinalpha C-terminal deletion and actin as compared with the interaction between full-length mXinalpha and actin. Furthermore, force expression of green fluorescent protein fused to an mXinalpha C-terminal deletion in cultured cells showed greater stress fiber localization compared with force-expressed GFP-mXinalpha. These results suggest a model whereby the C terminus of mXinalpha may prevent the full-length molecule from binding to actin, until the beta-catenin-binding domain is occupied by beta-catenin. The binding of mXinalpha to beta-catenin at the adherens junction would then facilitate actin binding. In support of this model, we found that the actin binding and bundling activity of mXinalpha was enhanced in the presence of beta-catenin.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Adherens Junctions/metabolism , DNA-Binding Proteins/metabolism , Nuclear Proteins/metabolism , beta Catenin/metabolism , Actin Cytoskeleton/genetics , Actin Cytoskeleton/ultrastructure , Actins/genetics , Adherens Junctions/genetics , Adherens Junctions/pathology , Amino Acid Sequence/genetics , Animals , CHO Cells , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cricetinae , Cricetulus , DNA-Binding Proteins/genetics , Heart Conduction System/metabolism , Heart Conduction System/pathology , Hypertrophy/genetics , Hypertrophy/metabolism , Hypertrophy/pathology , Mice , Models, Biological , Nuclear Proteins/genetics , Peptide Mapping , Protein Binding/genetics , Protein Structure, Tertiary , Rabbits , Sequence Deletion , Two-Hybrid System Techniques , beta Catenin/genetics
4.
Am J Physiol Heart Circ Physiol ; 293(5): H2680-92, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17766470

ABSTRACT

The intercalated disk protein Xin was originally discovered in chicken striated muscle and implicated in cardiac morphogenesis. In the mouse, there are two homologous genes, mXinalpha and mXinbeta. The human homolog of mXinalpha, Cmya1, maps to chromosomal region 3p21.2-21.3, near a dilated cardiomyopathy with conduction defect-2 locus. Here we report that mXinalpha-null mouse hearts are hypertrophied and exhibit fibrosis, indicative of cardiomyopathy. A significant upregulation of mXinbeta likely provides partial compensation and accounts for the viability of the mXinalpha-null mice. Ultrastructural studies of mXinalpha-null mouse hearts reveal intercalated disk disruption and myofilament disarray. In mXinalpha-null mice, there is a significant decrease in the expression level of p120-catenin, beta-catenin, N-cadherin, and desmoplakin, which could compromise the integrity of the intercalated disks and functionally weaken adhesion, leading to cardiac defects. Additionally, altered localization and decreased expression of connexin 43 are observed in the mXinalpha-null mouse heart, which, together with previously observed abnormal electrophysiological properties of mXinalpha-deficient mouse ventricular myocytes, could potentially lead to conduction defects. Indeed, ECG recordings on isolated, perfused hearts (Langendorff preparations) show a significantly prolonged QT interval in mXinalpha-deficient hearts. Thus mXinalpha functions in regulating the hypertrophic response and maintaining the structural integrity of the intercalated disk in normal mice, likely through its association with adherens junctional components and actin cytoskeleton. The mXinalpha-knockout mouse line provides a novel model of cardiac hypertrophy and cardiomyopathy with conduction defects.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Cardiomegaly/physiopathology , Cardiomyopathies/physiopathology , DNA-Binding Proteins/metabolism , Heart Conduction System/physiopathology , Nuclear Proteins/metabolism , Sarcolemma/metabolism , Animals , Arrhythmias, Cardiac/pathology , Cardiomegaly/pathology , Cardiomyopathies/pathology , Heart Conduction System/pathology , Mice , Mice, Knockout , Sarcolemma/pathology
5.
Methods Mol Biol ; 366: 183-201, 2007.
Article in English | MEDLINE | ID: mdl-17568125

ABSTRACT

To understand how cardiac gene expression is regulated, the identification and characterization of cis-regulatory elements and their trans-acting factors by gel mobility shift assay (GMSA) or gel retardation assay are essential and common steps. In addition to providing a general protocol for GMSA, this chapter describes some applications of this assay to characterize cardiac-specific and ubiquitous trans-acting factors bound to regulatory elements [novel TCTG(G/C) direct repeat and A/T-rich region] of the rat cardiac troponin T promoter. In GMSA, the specificity of the binding of trans-acting factor to labeled DNA probe should be verified by the addition of unlabeled probe in the reaction mixture. The migratory property of DNA-protein complexes formed by protein extracts prepared from different tissues can be compared to determine the tissue specificity of trans-acting factors. GMSA, coupled with specific antibody to trans-acting factor (antibody supershift assay), is used to identify proteins present in the DNA-protein complex. The gel-shift competition assay with an unlabeled probe containing a slightly different sequence is a powerful technique used to assess the sequence specificity and relative binding affinity of a DNA-protein interaction. GMSA with SDS-PAGE fractionated proteins allows for the determination of the apparent molecular mass of bound trans-acting factor.


Subject(s)
Electrophoretic Mobility Shift Assay/methods , Myocardium/metabolism , Promoter Regions, Genetic , Regulatory Elements, Transcriptional/genetics , Transcription Factors/genetics , Animals , Base Sequence , Cells, Cultured , Electrophoresis, Polyacrylamide Gel , Gastric Mucosa/metabolism , Liver/metabolism , Molecular Sequence Data , Muscle, Skeletal/metabolism , Protein Binding , Rats , Sequence Homology, Nucleic Acid , Troponin T/genetics
6.
J Med Sci ; 25(5): 215-222, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16708114

ABSTRACT

Xin was first cloned using differential mRNA display from the developing chicken heart. Chick Xin (cXin) participates in a BMP-Nkx2.5-MEF2C pathway to regulating cardiac morphogenesis. Through subsequent EST database searches and cDNA cloning, two mouse Xin genes, mXinα and mXinß were identified and cloned. The human homologue of mXinα (named Cmya1) was mapped to chromosome 3p21.2-p21.3 by radiation hybrid analysis and recently to 3p22.2 by DNA sequencing, which is near the loci for a dilated cardiomyopathy with conduction defect-2 and arrhythmogenic right ventricular dysplasia-5. The predicted human homologue of mXinß (named Cmya3) was mapped to chromosome 2q24.3 by DNA sequencing. Predicted Xin proteins all contain a novel 16-amino acid repeating unit (Xin repeat), a putative DNA binding domain and nuclear localization signal, as well as a proline-rich region. All three Xin genes from chick and mouse have a similar tissue expression profile, which is restricted to striated muscle. The expression of mXinα in Nkx2.5 or MEF2C knockout mouse embryos was drastically reduced, suggesting that mXinα is a downstream target of the Nkx2.5 and MEF2C transcription factors. On the other hand, the expression of mXin was up-regulated when mice were subjected to pressure overload-induced cardiac hypertrophy. Xin protein co-localizes with N-cadherin and ß-catenin throughout mouse embryogenesis and into adulthood. Furthermore, mXinα appears to interact directly with ß-catenin. The Xin repeats bind to actin filaments and may also organize microfilaments into networks. These results may suggest that Xin acts by integrating adhesion, by organizing actin filament arrangement at the insertion sites, and by regulating Wnt/ß-catenin-and N-cadherin-mediated signaling pathways required for cardiac development and cardiac function.

SELECTION OF CITATIONS
SEARCH DETAIL
...