Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Soft Matter ; 20(13): 2892-2899, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38465518

ABSTRACT

The use of DEHP (diethylhexyl phthalate) is now banned for most applications in Europe; the exception is for blood bags, where its toxicity is overshadowed by its ability to extend the storage life of red blood cells. Another plasticiser, BTHC (butanoyl trihexyl citrate), is used in paediatric blood bags but does not stabilise blood cells as effectively. Interactions between plasticisers and lipids are investigated with a phospholipid, DMPC, to understand the increased stability of blood cells in the presence of DEHP as well as bioaccumulation and identify differences with BTHC. Mixed monolayers of DMPC and DEHP or BTHC were studied on Langmuir troughs where surface pressure/area isotherms can be measured. Neutron reflection measurements were made to determine the composition and structure of these mixed layers. A large amount of plasticiser can be incorporated into a DMPC monolayer but once an upper limit is reached, plasticiser is selectively removed from the interface at high surface pressures. The upper limit is found to occur between 40-60 mol% for DEHP and 20-40 mol% for BTHC. The areas per molecule are also different with DEHP being in the range of 50-100 Å2 and BTHC being 65-120 Å2. Results indicate that BTHC does not fit as well as DEHP in DMPC monolayers which could help explain the differences observed with regards to the stability of blood cells.


Subject(s)
Butyrates , Diethylhexyl Phthalate , Humans , Child , Phospholipids , Dimyristoylphosphatidylcholine , Blood Preservation/methods
2.
Phys Chem Chem Phys ; 24(5): 2762-2776, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-34647947

ABSTRACT

The bioactivity, biological fate and cytotoxicity of nanomaterials when they come into contact with living organisms are determined by their interaction with biomacromolecules and biological barriers. In this context, the role of symmetry/shape anisotropy of both the nanomaterials and biological interfaces in their mutual interaction, is a relatively unaddressed issue. Here, we study the interaction of gold nanoparticles (NPs) of different shapes (nanospheres and nanorods) with biomimetic membranes of different morphology, i.e. flat membranes (2D symmetry, representative of the most common plasma membrane geometry), and cubic membranes (3D symmetry, representative of non-lamellar membranes, found in Nature under certain biological conditions). For this purpose we used an ensemble of complementary structural techniques, including Neutron Reflectometry, Grazing Incidence Small-Angle Neutron Scattering, on a nanometer lengthscale and Confocal Laser Scanning Microscopy on a micrometer length scale. We found that the structural stability of the membrane towards NPs is dependent on the topological characteristic of the lipid assembly and of the NPs, where a higher symmetry gave higher stability. In addition, Confocal Laser Scanning Microscopy analyses highlighted that NPs interact with cubic and lamellar phases according to two distinct mechanisms, related to the different structures of the lipid assemblies. This study for the first time systematically addresses the role of NPs shape in the interaction with lipid assemblies with different symmetry. The results will contribute to improve the fundamental knowledge on lipid interfaces and will provide new insights on the biological function of phase transitions as a response strategy to the exposure of NPs.


Subject(s)
Gold , Metal Nanoparticles , Anisotropy , Lipids , Scattering, Small Angle
3.
Adv Colloid Interface Sci ; 277: 102109, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32028074

ABSTRACT

Plasticisers are widely used to provide desirable mechanical properties of many polymeric materials. These small molecule additives are also known to leach from the finished products, and this not only may modify the physical properties but the distribution of these materials in the environment and in the human body can cause long-term health concerns and environmental challenges. Many of these plasticisers are esters of polyvalent acids and phthalic acid has previously been predominant but various alternatives are now being more widely explored. The eventual distribution of these compounds depends not just on solubility in aqueous media and on vapour pressure but also on their interaction with other materials, particularly lipids and amphiphiles. This review provides an overview of both the basic physical data (solubility, partition coefficients, surface tension, vapour pressure) that is available in the literature and summarises what has been learnt about the molecular interactions of various plasticisers with surfactants and lipids.


Subject(s)
Plasticizers/chemistry , Polymers/chemistry , Surface-Active Agents/chemistry , Humans , Plasticizers/metabolism , Polymers/metabolism , Solubility , Surface-Active Agents/metabolism
4.
Langmuir ; 33(32): 7854-7861, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28732155

ABSTRACT

The structure and electrochemical properties of adsorbed complexes based on mixtures of polyvinylamine-g-TEMPO (PVAm-T) and laccase were related to the ability of the adsorbed complexes to oxidize cellulose. PVAm-T10 with 10% of the amines bearing TEMPO moieties (i.e., DS = 10%), adsorbed onto gold sulfonate EQCM-D sensor surfaces giving a hydrogel film that was 7 nm thick, 89% water, and encasing laccase (200 mM) and TEMPO moieties (33 mM). For DS values >10%, all of the TEMPOs in the hydrogel film were redox-active in that they could be oxidized by the electrode. With hydrogel layers made with lower-DS PVAm-Ts, only about half of the TEMPOs were redox-active; 10% DS appears to be a percolation threshold for complete TEMPO-to-TEMPO electron transport. In parallel experiments with hydrogel complexes adsorbed onto regenerated cellulose films, the aldehyde concentrations increased monotonically with the density of redox-active TEMPO moieties in the adsorbed hydrogel. The maximum density of aldehydes was 0.24 µmol/m2, about 10 times less than the theoretical concentration of primary hydroxyl groups exposed on crystalline cellulose surfaces. Previous work showed that PVAm-T/laccase complexes are effective adhesives between wet cellulose surfaces when the DS is >10%. This work supports the explanation that TEMPO-to-TEMPO electron transport is required for the generation of aldehydes necessary for wet adhesion to PVAm.

5.
ACS Appl Mater Interfaces ; 9(24): 21000-21009, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28562005

ABSTRACT

Hydrazide-derivatized poly(N-isopropylacrylamide-co-acrylic acid) microgels gave strong adhesion to wet, TEMPO oxidized, regenerated cellulose membranes without a drying or heating step. Adhesion was attributed to hydrazone covalent bond formation with aldehyde groups present on the cellulose surfaces. This is one of only three chemistries we have found that gives significant never-dried adhesion between wet cellulose surfaces. By contrast, for cellulose joints that have been dried and heated before wet testing, the hydrazide-hydrazone chemistry offers no advantages over standard paper industry wet strength resins. The design rules for the hydrazide-microgel adhesives include: cationic microgels are superior to anionic gels; the lower the microgel cross-link density, the higher the adhesion; longer PEG-based hydrazide tethers offer no advantage over shorter attachments; and, adhesion is independent of microgel diameter. Many of these rules were in agreement with predictions of a simple adhesion model where the microgels were assumed to be ideal springs. We propose that the unexpected, high cohesion between neighboring microgels in multilayer films was a result of bond formation between hydrazide groups and residual NHS-carboxyl esters from the preparation of the hydrazide microgels.

6.
ACS Appl Mater Interfaces ; 9(6): 5622-5628, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28106366

ABSTRACT

Layer-by-layer (LbL) assemblies of polyvinylamine with grafted TEMPO moieties (PVAm-T) with sodium polystyrenesulfonate (PSS) were prepared on gold-sulfonate surfaces, and the redox properties were measured by cyclic voltammetry. LbL compositions were probed by quartz crystal microbalance (wet) and ellipsometric (dry) film measurements. Approximately 30% of the TEMPO moieties in the LbL assemblies were redox-active when the total TEMPO coverage was varied up to 6 µmol/m2, by either varying the TEMPO content in PVAm-T or by varying the number of LbL bilayers. Three non-redox-active PVAm/PSS blocking bilayers were required to prevent the electrode from oxidizing PVAm-T in the exterior LbL layer. This suggests significant intermixing between the layers in the LbL film. In addition to contributing to the small but growing body of work on redox polymers based on grafted TEMPO, this work serves as a reference point for understanding the redox properties of colloidal PVAm-T-laccase complexes in future work.

7.
Soft Matter ; 12(46): 9330-9333, 2016 Nov 23.
Article in English | MEDLINE | ID: mdl-27819378

ABSTRACT

The phase behavior of lactoferrin has been studied as a function of concentration at a pH and ionic strength where lactoferrin is known to interact effectively via a patch-patch attraction. In contrast to isotropic attractive potentials, the directional attraction gives rise to a different phase or solution behavior. At low concentrations, the protein dimerizes. As the concentration is increased, the protein self-assembles into elongated, stripe-like structures at intermediate protein concentrations, a behavior which has been predicted for the case of attractive one-patch colloids. The stripe phase is surprisingly difficult to detect using conventional techniques, i.e. small-angle X-ray scattering, since only a small fraction of the proteins participate in the stripes combined with sedimentation due to micron-sized entities. This is circumvented by monitoring the change in the overall protein concentration by static light scattering and the stripe formation can be followed. For visualization of the structures cryo-TEM is used.


Subject(s)
Lactoferrin/chemistry , Colloids , Osmolar Concentration , Protein Conformation , Protein Multimerization
8.
ACS Appl Mater Interfaces ; 8(36): 24161-7, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27552256

ABSTRACT

The surface of regenerated cellulose membranes was modified by irreversible adsorption of carboxymethylcellulose (CMC). Pairs of wet CMC-modified membranes were laminated with polyvinylamine (PVAm) at room temperature, and the delamination force for wet membranes was measured for both dried and never-dried laminates. The wet adhesion was studied as a function of PVAm molecular weight, amine content, and deposition pH of the polyelectrolyte. Surprisingly the PVAm-CMC system gave substantial wet adhesion that exceeded that of TEMPO-oxidized membranes with PVAm for both dried and never-dried laminates. The greatest wet adhesion was achieved for fully hydrolyzed high molecular weight PVAm. Bulk carboxymethylation of cellulose membranes gave inferior wet adhesion combined with PVAm as compared to CMC adsorption which indicates that a CMC layer of the order of 10 nm was necessary. There are no obvious covalent cross-linking reactions between CMC and PVAm at room temperature, and on the basis of our results, we are instead attributing the wet adhesion to complex formation between the PVAm and the irreversibly adsorbed CMC at the cellulose surface. We propose that interdigitation of PVAm chains into the CMC layer is responsible for the high wet adhesion values.

9.
Langmuir ; 31(15): 4435-42, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25859709

ABSTRACT

Adsorption of a single layer of molecules on a surface, or even a reorientation of already present molecules, can significantly affect the surface properties of a material. In this study, vibrational sum frequency spectroscopy (VSFS) has been used to study the change in molecular structure at the solid-air interface following thermal curing of polyelectrolyte multilayers of poly(allylamine hydrochloride) and poly(acrylic acid). Significant changes in the VSF spectra were observed after curing. These changes were accompanied by a distinct increase in the static water contact angle, showing how the properties of the layer-by-layer molecular structure are controlled not just by the polyelectrolyte in the outermost layer but ultimately by the orientation of the chemical constituents in the outermost layers.

10.
Biomacromolecules ; 15(12): 4420-8, 2014 Dec 08.
Article in English | MEDLINE | ID: mdl-25333327

ABSTRACT

Model layer-by-layer (LbL) assemblies of poly(allylamine hydrochloride) (PAH) and hyaluronic acid (HA) were fabricated in order to study their wet adhesive behavior. The film characteristics were investigated to understand the inherent structures during the assembly process. Subsequently, the adhesion of these systems was evaluated to understand the correlation between the structure of the film and the energy required to separate these LbL assemblies. We describe how the conditions of the LbL fabrication can be utilized to control the adhesion between films. The characteristics of the film formation are examined in the absence and presence of salt during the film formation. The dependence on contact time and LbL film thickness on the critical pull-off force and work of adhesion are discussed. Specifically, by introducing sodium chloride (NaCl) in the assembly process, the pull-off forces can be increased by a factor of 10 and the work of adhesion by 2 orders of magnitude. Adjusting both the contact time and the film thickness enables control of the adhesive properties within these limits. Based on these results, we discuss how the fabrication procedure can create tailored adhesive interfaces with properties surpassing analogous systems found in nature.


Subject(s)
Biopolymers/chemistry , Adhesiveness , Hyaluronic Acid/chemistry , Microscopy, Atomic Force , Polyamines/chemistry , Surface Properties
11.
Carbohydr Polym ; 100: 218-24, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24188857

ABSTRACT

The Layer-by-Layer technique was used to build a polyelectrolyte multilayer on the surface of pulp fibres. The treated fibres were then used to prepare paper sheets and the mechanical properties of these sheets were evaluated as a function of the number of bi-layers on the fibres. Two different systems were studied: polyethyleneimine (PEI)/nanofibrillated cellulose (NFC), and polyallylamine hydrochloride (PAH)/hyaluronic acid (HA). Model experiments using dual polarization interferometry and SiO2 surfaces showed that the two systems gave different thicknesses for a given number of layers. The outer layer was found to be a key parameter in the PEI/NFC system, whereas it was less important in the PAH/HA system. The mechanical properties of the sheets made from the PAH/HA treated fibres were significantly greater than those made from untreated fibres, reaching 70 Nm/g in tensile index and 6.5% in strain at break. Such a modification could be very useful for 3D forming of paper, opening new perspectives in for example the packaging industry, with a renewable and biodegradable product as a potential substitute for some of the traditional oil-based plastics.

12.
Biomacromolecules ; 13(10): 3046-53, 2012 Oct 08.
Article in English | MEDLINE | ID: mdl-22924973

ABSTRACT

For the first time the dry adhesion was measured for an all-wood biopolymer system using Johnson-Kendall-Roberts (JKR) contact mechanics. The polydimethylsiloxane hemisphere was successfully surface-modified with a Cellulose I model surface using layer-by-layer assembly of nanofibrillated cellulose and polyethyleneimine. Flat surfaces of cellulose were equally prepared on silicon dioxide substrates, and model surfaces of glucomannan and lignin were prepared on silicon dioxide using spin-coating. The measured work of adhesion on loading and the adhesion hysteresis was found to be very similar between cellulose and all three wood polymers, suggesting that the interaction between these biopolymers do not differ greatly. Surface energy calculations from contact angle measurements indicated similar dispersive surface energy components for the model surfaces. The dispersive component was dominating the surface energy for all surfaces. The JKR work of adhesion was lower than that calculated from contact angle measurements, which partially can be ascribed to surface roughness of the model surfaces and overestimation of the surface energies from contact angle determinations.


Subject(s)
Biopolymers/chemistry , Dimethylpolysiloxanes/chemistry , Polyethyleneimine/chemistry , Wood/chemistry , Adhesiveness , Cellulose/chemistry , Lignin/chemistry , Mannans/chemistry , Microscopy, Atomic Force , Models, Molecular , Silicon Dioxide/chemistry , Spectrophotometry , Surface Properties , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...