Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 4: 6971, 2014 Nov 10.
Article in English | MEDLINE | ID: mdl-25382600

ABSTRACT

Saccharomyces cerevisiae strains vary in their ability to develop and enhance sensory attributes of alcoholic beverages and are often found growing in mixed strain fermentations; however, quantifying individual strains is challenging due to quantification inaccuracies, low marker longevity, and compromised kinetics. We developed a fluorescent probe, consisting of glutathione molecules conjugated to a quantum dot (QD). Two S. cerevisiae strains were incubated with different coloured probes (QD attached to glutathione molecules, QD-GSH), fermented at multiple ratios, and quantified using confocal microscopy. The QD method was compared with a culture method using microsatellite DNA analysis (MS method). Probes were taken up by an ADP1 encoded transporter, transferred from mother cell to daughter cell, detectable in strains throughout fermentation, and were non-toxic. This resulted in a new quantification method that was more accurate and efficient than the MS method.


Subject(s)
Quantum Dots , Yeasts , Fermentation , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Yeasts/classification , Yeasts/genetics , Yeasts/metabolism
2.
Int J Food Microbiol ; 180: 56-61, 2014 Jun 16.
Article in English | MEDLINE | ID: mdl-24786553

ABSTRACT

Inoculated fermentations are practiced in most wine regions of the world. This type of fermentation involves adding a commercial Saccharomyces cerevisiae strain as an inoculant. It is often assumed that the inoculant maintains dominance throughout the fermentation; however, sometimes commercial or indigenous yeasts, which were not intentionally added, end up as the dominant yeast in the winery fermentation. The aim of this study was to compare implantation/persistence of inoculants among three Canadian wineries (Quails' Gate, Cedar Creek, and Road 13 wineries). In 2010, three inoculated fermentation tanks at each of three wineries were sampled at four stages of fermentation (pre-inoculation, early, mid, and end). In addition, results from the end stage of fermentation, from two of the three wineries, were compared among different vintages (resulting in a 4-year comparison at Quails' Gate winery and a 2-year comparison at Cedar Creek winery). Strains of S. cerevisiae were discriminated by microsatellite analysis and identified using commercial microsatellite databases, whereas DNA sequencing was used to identify non-Saccharomyces. The percent implantation/persistence of the inoculum was significantly lower at Quails' Gate and Cedar Creek wineries as compared with the Road 13 winery in the 2010 vintage. Relatively low persistence of the inoculum at Quails' Gate winery was also found in the 2009 vintage, but low values were not found at Quails' Gate winery in 2011 and 2012 or at Cedar Creek winery in 2012. In all tanks having <80% relative abundance of the inoculant, the commercial strain (Lalvin ICV-D254®/Fermol® Premier Cru) was the dominant or co-dominant yeast. Our findings highlight year-to-year variation in inoculum implantation/persistence and the idea that unless strain typing of S. cerevisiae is conducted at the winery, there are no obvious fermentation factors that would indicate a relatively low inoculum implantation/persistence.


Subject(s)
Fermentation , Saccharomyces cerevisiae/physiology , Wine/microbiology , Biodiversity , Canada , Microsatellite Repeats/genetics , Saccharomyces cerevisiae/genetics , Yeasts/genetics , Yeasts/physiology
3.
Biochemistry ; 50(51): 11131-42, 2011 Dec 27.
Article in English | MEDLINE | ID: mdl-22097960

ABSTRACT

Human methionine synthase reductase (MSR), a diflavin oxidoreductase, plays a vital role in methionine and folate metabolism by sustaining methionine synthase (MS) activity. MSR catalyzes the oxidation of NADPH and shuttles electrons via its FAD and FMN cofactors to inactive MS-cob(II)alamin. A conserved aromatic residue (Trp697) positioned next to the FAD isoalloxazine ring controls nicotinamide binding and catalysis in related flavoproteins. We created four MSR mutants (W697S, W697H, S698Δ, and S698A) and studied their associated kinetic behavior. Multiwavelength stopped-flow analysis reveals that NADPH reduction of the C-terminal Ser698 mutants occurs in three resolvable kinetic steps encompassing transfer of a hydride ion to FAD, semiquinone formation (indicating FAD to FMN electron transfer), and slow flavin reduction by a second molecule of NADPH. Corresponding experiments with the W697 mutants show a two-step flavin reduction without an observable semiquinone intermediate, indicating that W697 supports FAD to FMN electron transfer. Accelerated rates of FAD reduction, steady-state cytochrome c(3+) turnover, and uncoupled NADPH oxidation in the S698Δ and W697H mutants may be attributed to a decrease in the energy barrier for displacement of W697 by NADPH. Binding of NADP(+), but not 2',5'-ADP, is tighter for all mutants than for native MSR. The combined studies demonstrate that while W697 attenuates hydride transfer, it ensures coenzyme selectivity and accelerates FAD to FMN electron transfer. Moreover, analysis of analogous cytochrome P450 reductase (CPR) variants points to key differences in the driving force for flavin reduction and suggests that the conserved FAD stacking tryptophan residue in CPR also promotes interflavin electron transfer.


Subject(s)
Ferredoxin-NADP Reductase/chemistry , Ferredoxin-NADP Reductase/metabolism , Flavins/metabolism , Flavoproteins/chemistry , Flavoproteins/metabolism , Hydrogen/metabolism , Tryptophan/metabolism , Amino Acid Sequence , Amino Acid Substitution , Biocatalysis , Electron Transport , Ferredoxin-NADP Reductase/genetics , Flavin Mononucleotide/chemistry , Flavin Mononucleotide/metabolism , Flavin-Adenine Dinucleotide/chemistry , Flavin-Adenine Dinucleotide/metabolism , Flavoproteins/genetics , Humans , Kinetics , Mutant Proteins/chemistry , Mutant Proteins/metabolism , NAD/metabolism , NADP/metabolism , Oxidation-Reduction , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...