Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Phys Chem Chem Phys ; 26(4): 3342-3349, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38198198

ABSTRACT

In an extension of previous work (Simsová et al., Phys. Chem. Chem. Phys., 2022, 24, 25250), we study stimulated radiative association of sodium chloride (NaCl) in an environment with a black body radiation. Colliding neutral (Na and Cl) and ionic (Na+ and Cl-) fragments are considered. The coupling between the diabatic ionic and neutral channels is accounted for. The cross sections are computed and resolved on the vibrational states of the formed NaCl molecule for detailed analysis. The thermal rate coefficients for neutral colliding fragments at kinetic temperatures, T, from 1 K to 5300 K are computed for use in astrochemical modelling. The total rate coefficient is affected by more than one order of magnitude by stimulated emission from a blackbody radiator of temperature Tb = 50 000 K. The effect from stimulated emission is largest for the lowest kinetic temperatures, where Tb of a few thousand kelvins has a significant effect. The rate coefficient for the colliding ionic fragments is calculated from 80 K to 3615 K. The blackbody radiation has little effect on this process.

2.
J Chem Phys ; 159(14)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37831719

ABSTRACT

We have developed the polyatomic extension of the established [M. Gustafsson, J. Chem. Phys. 138, 074308 (2013)] classical theory of radiative association in the absence of electronic transitions. The cross section and the emission spectrum of the process is calculated by a quasiclassical trajectory method combined with the classical Larmor formula which can provide the radiated power in collisions. We have also proposed a Monte Carlo scheme for efficient computation of ro-vibrationally quantum state resolved cross sections for radiative association. Besides the method development, the global potential energy and dipole surfaces for H + CN collisions have been calculated and fitted to test our polyatomic semiclassical method.

3.
Adv Radiat Oncol ; 8(5): 101223, 2023.
Article in English | MEDLINE | ID: mdl-37124029

ABSTRACT

Purpose: The aim of this study was to examine measured and calculated dose distributions in a thin-chest-wall phantom and estimate the variations in the dose-volume histogram (DVH) parameters used in plan evaluation for patient geometries with chest-wall thicknesses <15 mm with and without bolus implementation. Methods and Materials: Measurements were made using thermoluminescent dosimeters in a chest-wall phantom. The Monte Carlo method, anisotropic analytical algorithm, and Acuros XB Eclipse algorithms were used to calculate dose distributions for clinical plans. DVH parameters for clinical target volume tumor (CTVT) and planning target volume (PTV) and mean doses were evaluated for 15 patients with a chest-wall thickness of 8 to 15 mm with and without partial bolus and for 10 patients with a chest-wall thickness of 20 to 25 mm without bolus. Results: Measurements showed that the dose at a depth of 2 to 12 mm at the beam entrance and laterally was within 90% of the dose at 8 mm depth. Monte Carlo and Acuros XB calculations were well aligned with the experimental data, whereas the anisotropic analytical algorithm underestimated the beam entrance and lateral doses. The DVH parameters for the patients with a thin chest wall were sensitive to calculation algorithm, resolution, body structure definition, and patient geometry. The parameters CTVTV95%, CTVTD98%, and PTVD98% were much lower than the tolerance criteria. Partial bolus improved the values for all algorithms and decreased the variations due to patient geometry. Dose calculations for patients with a chest-wall thickness of 20 to 25 mm resulted in sufficient target coverage and low dependence on patient geometry and calculation algorithm without the use of bolus. Conclusions: Dose calculations using advanced algorithms and resolution <2 mm are recommended for patients with a thin chest wall. Specific DVH criteria or the implementation of partial bolus was needed to facilitate plan development and evaluation for this patient group.

4.
J Med Chem ; 66(12): 7772-7784, 2023 06 22.
Article in English | MEDLINE | ID: mdl-36995126

ABSTRACT

Positron emission tomography (PET) imaging is used in drug development to noninvasively measure biodistribution and receptor occupancy. Ideally, PET tracers retain target binding and biodistribution properties of the investigated drug. Previously, we developed a zirconium-89 PET tracer based on a long-circulating glucagon-like peptide 1 receptor agonist (GLP-1RA) using desferrioxamine (DFO) as a chelator. Here, we aimed to develop an improved zirconium-89-labeled GLP-1RA with increased molar activity to increase the uptake in low receptor density tissues, such as brain. Furthermore, we aimed at reducing tracer accumulation in the kidneys. Introducing up to four additional Zr-DFOs resulted in higher molar activity and stability, while retaining potency. Branched placement of DFOs was especially beneficial. Tracers with either two or four DFOs had similar biodistribution as the tracer with one DFO in vivo, albeit increased kidney and liver uptake. Reduced kidney accumulation was achieved by introducing an enzymatically cleavable Met-Val-Lys (MVK) linker motif between the chelator and the peptide.


Subject(s)
Deferoxamine , Positron-Emission Tomography , Deferoxamine/chemistry , Tissue Distribution , Positron-Emission Tomography/methods , Zirconium/chemistry , Chelating Agents/chemistry , Kidney/diagnostic imaging , Cell Line, Tumor
5.
Phys Chem Chem Phys ; 24(41): 25250-25257, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36222237

ABSTRACT

Collisions of sodium and chlorine atoms and of their ions are studied within the diabatic two-state picture at energies below and above the ionic threshold with focus on the processes of radiative association, chemiionisation, and mutual neutralisation. The radiative-association cross sections as functions of collision energy are calculated up to 4.6 eV in the case of neutral atoms and up to 3.12 eV in the case of ions. The non-radiative charge-exchange cross sections as functions of collision energy are calculated up to 12 eV for chemiionisation and up to 10.52 eV for mutual neutralisation. The corresponding radiative-association rate coefficients are then determined up to 5300 K for the radiative association of neutral atoms and non-radiative charge-exchange and up to 3615 K for the radiative association of ions. Contribution of many Fano-Feshbach-type resonances is included to the rate coefficient of neutral-atom radiative association. The chemiionisation rate coefficients were calculated from 1000 K to 5300 K. The process of mutual neutralisation exhibits the largest cross sections and also the largest rate coefficients with values around 10-9 cm3 s-1 at all calculated temperatures, 120-5300 K.

6.
ACS Pharmacol Transl Sci ; 5(8): 616-624, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35990007

ABSTRACT

Positron emission tomography (PET) is a molecular imaging modality that enables non-invasive visualization of tracer distribution and pharmacology. Recently, peptides with long half-lives allowed once-a-week dosing of glucagon-like peptide-1 receptor (GLP-1R) agonists with therapeutic applications in diabetes and obesity. PET imaging for such long-lived peptides is hindered by the typically used short-lived radionuclides. Zirconium-89 (89Zr) emerged as a promising PET radionuclide with a sufficiently long half-life to be applied for biodistribution studies of long-circulating biomolecules. A comparison between the biodistribution profiles obtained via 89Zr-PET and the current standard, quantitative whole-body autoradiography (QWBA), will be valuable for the development of novel peptide drugs. We determined the PET biodistribution of a 89Zr-labeled acylated peptide agonist of GLP-1R and compared it to the profile obtained by QWBA using analogous tritiated tracers for up to 1 week after administration. The plasma metabolic profile was obtained and identification was done for the tritiated tracers. We found that, at early time points, the biodistribution profiles agreed between PET and QWBA. At the latertime points, the 89Zr tracer remained primarily trapped in the kidneys. The introduction of desferrioxamine (DFO) chelator reduced the peptide stability, and UPLC-MS analysis identified a circulating metabolite arising from DFO hydrolysis. Kidney accumulation of radiolabeled peptides and DFO metabolic instability may compromise biodistribution studies using 89Zr-PET to support the development of new biopharmaceuticals. PET and QWBA biodistribution data correlated well during the absorption phase, but new and more stable 89Zr chelators are needed for a more accurate description of the elimination phase.

7.
Bioconjug Chem ; 33(4): 625-633, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35320668

ABSTRACT

Selective modification of peptides and proteins is of foremost importance for the development of biopharmaceuticals and exploring biochemical pathways, as well as other applications. Here, we present a study on the development of a general and easily applicable selective method for N-terminal acylation of biomolecules, applying a new type of phenol esters. Key to the success was the development of highly tunable phenol activators bearing in the ortho-position, sulfonic acid or sulfonamide, acting as a steric shield for hydrolysis, and electron-withdrawing groups in the other ortho- and para-position for controlling the reactivity of the activated phenol esters. A library of heptapeptides, testing all 20 natural amino acids positioned at the N-terminal, were acylated in a selective manner at the N-terminus. The majority showed high conversion and excellent Nα-selectivity. Several biologically relevant biomolecules, including DesB30 insulin and human growth hormone, could also be modified at the N-terminal in a highly selective way, exemplified by either a fluorophore or a fatty acid sidechain. Finally, taking advantage of the possibility to accurately adjust the reactivity of the phenol esters, we present a potential strategy for the construction of dual active biopharmaceuticals through the employment of a bifunctional acylation linker and demonstrate its use in the creation of a GLP-1 insulin analogue, coupled through the lysine residue of GLP-1 and the N-terminal PheB1 amine of DesB30 insulin.


Subject(s)
Biological Products , Esters , Acylation , Amino Acid Sequence , Glucagon-Like Peptide 1 , Humans , Insulin , Peptides/chemistry , Phenol , Proteins/metabolism
8.
Bioconjug Chem ; 33(1): 172-179, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34962390

ABSTRACT

This paper describes the discovery, synthesis, and use of novel water-soluble acylation reagents for efficient and selective modification, cross-linking, and labeling of proteins and peptides, as well as for their use in the effective modification of sepharose beads under pH control in aqueous media. The reagents are based on a 2,4-dichloro-6-sulfonic acid phenol ester core combined with a variety of linker structures. The combination of these motifs leads to an ideal balance between hydrolytic stability and reactivity. At high pH, good to excellent conversions (up to 95%) and regioselectivity (up to 99:1 Nε/Nα amine ratio) in the acylation were realized, exemplified by the chemical modification of incretin peptides and insulin. At neutral pH, an unusually high preference toward the N-terminal phenylalanine in an insulin derivative was observed (>99:1 Nα/Nε), which is up until now unprecedented in the literature for more elaborate reagents. In addition, the unusually high hydrolytic stability of these reagents and their ability to efficiently react at low concentrations (28 µM or 0.1 mg/mL) are exemplified with a hydroxy linker-based reagent and are a unique feature of this work.


Subject(s)
Phenol
9.
Chemistry ; 27(24): 7114-7123, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33452676

ABSTRACT

A series of pharmaceutically relevant small molecules and biopharmaceuticals bearing aliphatic carboxamides have been successfully labeled with carbon-13. Key to the success of this novel carbon isotope labeling technique is the observation that 13 C-labeled NiII -acyl complexes, formed from a 13 CO insertion step with NiII -alkyl intermediates, rapidly react in less than one minute with 2,2'-dipyridyl disulfide to quantitatively form the corresponding 2-pyridyl thioesters. Either the use of 13 C-SilaCOgen or 13 C-COgen allows for the stoichiometric addition of isotopically labeled carbon monoxide. Subsequent one-pot acylation of a series of structurally diverse amines provides the desired 13 C-labeled carboxamides in good yields. A single electron transfer pathway is proposed between the NiII -acyl complexes and the disulfide providing a reactive NiIII -acyl sulfide intermediate, which rapidly undergoes reductive elimination to the desired thioester. By further optimization of the reaction parameters, reaction times down to only 11 min were identified, opening up the possibility of exploring this chemistry for carbon-11 isotope labeling. Finally, this isotope labeling strategy could be adapted to the synthesis of 13 C-labeled liraglutide and insulin degludec, representing two antidiabetic drugs.

10.
J Chem Phys ; 153(11): 114305, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32962373

ABSTRACT

The radiative association (RA) rate constant is computed for the formation of the diatomic sodium chloride (NaCl) molecule in the temperature interval 1 K-30 K. At these temperatures, RA of NaCl through non-adiabatic dynamics is important. A scattering program has been implemented to carry out calculations of RA cross sections, accounting for coupled dynamics on the lowest ionic and the lowest neutral diabatic 1Σ+ states. The study shows that the non-adiabatic treatment gives a cross section that exceeds that of conventional adiabatic dynamics by one to four orders of magnitude. The contribution to the RA rate constant from Na and Cl approaching each other in the A1Π state has also been computed using an established quantum mechanical method. Ab initio data from the literature have been used for the potential energy curves, the diabatic coupling, and the electric dipole moments of NaCl.

11.
J Chem Phys ; 152(23): 234302, 2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32571059

ABSTRACT

We continue the development of the in-house molecular dynamics software package SpaCIAL and test it for the computation of the collision-induced absorption coefficients for a neon (Ne) and krypton (Kr) gas mixture. An apodization procedure for the dipole autocorrelation function is implemented and tested. We also carry out a statistical study of the convergence rate with respect to ensemble size. The resulting absorption coefficients show a good accordance with quantum mechanical results. Comparison with laboratory measurements shows agreement within 10%-20% at T = 295 K. At T = 480 K, a larger difference of 40%-80% is observed, which can presumably be explained by experimental uncertainties. For the study, an empirical (Barker, Fisher, and Watts) interaction-potential [Mol. Phys. 21, 657 (1971)] for Ne-Kr has been developed. Ab initio {coupled cluster with singles and doubles (triples) [CCSD(T)]} potentials for Ne-Ne, Kr-Kr, and Ne-Kr have been computed, as well as the CCSD(T) interaction-induced Ne-Kr dipole moment curve.

12.
Nucl Med Biol ; 82-83: 49-56, 2020.
Article in English | MEDLINE | ID: mdl-32000047

ABSTRACT

INTRODUCTION: Lately, zirconium-89 has shown great promise as a radionuclide for PET applications of long circulating biomolecules. Here, the design and synthesis of protracted and long-lived GLP-1 receptor agonists conjugated to desferrioxamine and labelled with zirconium-89 is presented with the purpose of studying their in vivo distribution by PET imaging. The labelled conjugates were evaluated and compared to a non-labelled GLP-1 receptor agonist in both in vitro and in vivo assays to certify that the modification did not significantly alter the peptides' structure or function. Finally, the zirconium-89 labelled peptides were employed in PET imaging, providing visual verification of their in vivo biodistribution. METHODS: The evaluation of the radiolabelled peptides and comparison to their non-labelled parent peptide was performed by in vitro assays measuring binding and agonistic potency to the GLP-1 receptor, physicochemical studies aiming at elucidating change in peptide structure upon bioconjugation and labelling as well as an in vivo food in-take study illustrating the compounds' pharmacodynamic properties. The biodistribution of the labelled GLP-1 analogues was determined by ex vivo biodistribution and in vivo PET imaging. RESULTS: The results indicate that it is surprisingly feasible to design and synthesize a protracted, zirconium-89 labelled GLP-1 receptor agonist without losing in vitro potency or affinity as compared to a non-labelled parent peptide. Physicochemical properties as well as pharmacodynamic properties are also maintained. The biodistribution in rats shows high accumulation of radiolabelled peptide in well-perfused organs such as the liver, kidney, heart and lungs. The PET imaging study confirmed the findings from the biodistribution study with a significant high uptake in kidneys and presence of activity in liver, heart and larger blood vessels. CONCLUSIONS AND ADVANCES IN KNOWLEDGE: This initial study indicates the potential to monitor the in vivo distribution of long-circulating incretin hormones using zirconium-89 based PET.


Subject(s)
Glucagon-Like Peptide-1 Receptor/agonists , Peptides/chemistry , Peptides/pharmacology , Positron-Emission Tomography/methods , Radioisotopes/chemistry , Zirconium/chemistry , Amino Acid Sequence , Chemistry Techniques, Synthetic , Drug Design , Half-Life , Isotope Labeling , Peptides/chemical synthesis , Peptides/pharmacokinetics , Radiochemistry , Tissue Distribution
14.
J Chem Phys ; 151(14): 144303, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31615255

ABSTRACT

We have implemented a scheme for classical molecular dynamics simulations of collision-induced absorption. The program has been applied to a gas mixture of argon (Ar) and krypton (Kr). The simulations are compared with accurate quantum dynamical calculations. The comparisons of the absorption coefficients show that classical molecular dynamics is correct within 10% for photon wave numbers up to 220 cm-1 at a temperature of 200 K for this system. At higher temperatures, the agreement is even better. Molecular dynamics accounts for many-body interactions, which, for example, give rise to continuous dimer formation and destruction in the gas. In this way, the method has an advantage compared with bimolecular classical (trajectory) treatments. The calculations are carried out with a new empirical Ar-Kr pair potential. This has been obtained through extensive analysis of experimental thermophysical and transport properties. We also present a new high level ab initio Ar-Kr potential curve for comparison, as well as ab initio interaction-induced dipole curves computed with different methods. In addition, the Ar-Kr polarizability and hyperpolarizability are reported. A comparison of the computed absorption spectra with an experiment taken at 300 K shows satisfactory agreement although a difference in absolute magnitude of 10%-15% persists. This discrepancy we attribute mainly to experimental uncertainty.

15.
Acta Oncol ; 58(12): 1720-1730, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31393203

ABSTRACT

Background and purpose: A collaborative network between proton therapy (PT) centres in Trento in Italy, Poland, Austria, Czech Republic and Sweden (IPACS) was founded to implement trials and harmonize PT. This is the first report of IPACS with the aim to show the level of harmonization that can be achieved for proton therapy planning of head and neck (sino-nasal) cancer.Methods: CT-data sets of five patients were included. During several face-to-face and online meetings, a common treatment planning protocol was developed. Each centre used its own treatment planning system (TPS) and planning approach with some restrictions specified in the treatment planning protocol. In addition, volumetric modulated arc therapy (VMAT) photon plans were created.Results: For CTV1, the average Dmedian was 59.3 ± 2.4 Gy(RBE) for protons and 58.8 ± 2.0 Gy(RBE) for VMAT (aim was 56 Gy(RBE)). For CTV2, the average Dmedian was 71.2 ± 1.0 Gy(RBE) for protons and 70.6 ± 0.4 Gy(RBE) for VMAT (aim was 70 Gy(RBE)). The average D2% for the spinal cord was 25.1 ± 8.5 Gy(RBE) for protons and 47.6 ± 1.4 Gy(RBE) for VMAT. The average D2% for chiasm was 46.5 ± 4.4 Gy(RBE) for protons and 50.8 ± 1.4 Gy(RBE) for VMAT, respectively. Robust evaluation was performed and showed the least robust plans for plans with a low number of beams.Discussion: In conclusion, several influences on harmonization were identified: adherence/interpretation to/of the protocol, available technology, experience in treatment planning and use of different beam arrangements. In future, all OARs that should be included in the optimization need to be specified in order to further harmonize treatment planning.


Subject(s)
Head and Neck Neoplasms/radiotherapy , International Cooperation , Organs at Risk , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Brain Stem/radiation effects , Cochlea/radiation effects , Europe , Head and Neck Neoplasms/diagnostic imaging , Humans , Larynx/radiation effects , Nose Neoplasms/diagnostic imaging , Nose Neoplasms/radiotherapy , Optic Nerve/radiation effects , Organs at Risk/radiation effects , Paranasal Sinus Neoplasms/diagnostic imaging , Paranasal Sinus Neoplasms/radiotherapy , Parotid Gland/radiation effects , Photons/therapeutic use , Radiotherapy, Intensity-Modulated/methods , Tomography, X-Ray Computed , Tumor Burden
17.
J Chem Phys ; 150(22): 224301, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31202215

ABSTRACT

It is well-known that resonances can serve as a catalyst for molecule formation. Rate constants for resonance-induced molecule formation are phenomenological as they depend upon the mechanism used to populate the resonances. Standard treatments assume tunneling from the continuum is the only available population mechanism, which means long-lived quasibound states are essentially unpopulated. However, if a fast resonance population mechanism exists, the long-lived quasibound states may be populated and give rise to a substantial increase in the molecule formation rate constant. In the present work, we show that the semiclassical formula of Kramers and ter Haar [Bull. Astron. Inst. Neth. 10, 137 (1946)] may be used to compute rate constants for radiative association in the limit of local thermodynamic equilibrium. Comparisons are made with quantum mechanical and standard semiclassical treatments, and results are shown for two limits which provide upper and lower bounds for the six most important radiative association reactions leading to the formation of CO, CN, and SiN. These results may have implications for interstellar chemistry in molecular clouds, where the environmental and thermodynamic conditions often are uncertain.

18.
Eur J Nucl Med Mol Imaging ; 46(9): 1966-1977, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31161258

ABSTRACT

PURPOSE: Currently, the most commonly used chelator for labelling antibodies with 89Zr for immunoPET is desferrioxamine B (DFO). However, preclinical studies have shown that the limited in vivo stability of the 89Zr-DFO complex results in release of 89Zr, which accumulates in mineral bone. Here we report a novel chelator DFOcyclo*, a preorganized extended DFO derivative that enables octacoordination of the 89Zr radiometal. The aim was to compare the in vitro and in vivo stability of [89Zr]Zr-DFOcyclo*, [89Zr]Zr-DFO* and [89Zr]Zr-DFO. METHODS: The stability of 89Zr-labelled chelators alone and after conjugation to trastuzumab was evaluated in human plasma and PBS, and in the presence of excess EDTA or DFO. The immunoreactive fraction, IC50, and internalization rate of the conjugates were evaluated using HER2-expressing SKOV-3 cells. The in vivo distribution was investigated in mice with subcutaneous HER2+ SKOV-3 or HER2- MDA-MB-231 xenografts by PET/CT imaging and quantitative ex vivo tissue analyses 7 days after injection. RESULTS: 89Zr-labelled DFO, DFO* and DFOcyclo* were stable in human plasma for up to 7 days. In competition with EDTA, DFO* and DFOcyclo* showed higher stability than DFO. In competition with excess DFO, DFOcyclo*-trastuzumab was significantly more stable than the corresponding DFO and DFO* conjugates (p < 0.001). Cell binding and internalization were similar for the three conjugates. In in vivo studies, HER2+ SKOV-3 tumour-bearing mice showed significantly lower bone uptake (p < 0.001) 168 h after injection with [89Zr]Zr-DFOcyclo*-trastuzumab (femur 1.5 ± 0.3%ID/g, knee 2.1 ± 0.4%ID/g) or [89Zr]Zr-DFO*-trastuzumab (femur 2.0 ± 0.3%ID/g, knee 2.68 ± 0.4%ID/g) than after injection with [89Zr]Zr-DFO-trastuzumab (femur 4.5 ± 0.6%ID/g, knee 7.8 ± 0.6%ID/g). Blood levels, tumour uptake and uptake in other organs were not significantly different at 168 h after injection. HER2- MDA-MB-231 tumour-bearing mice showed significantly lower tumour uptake (p < 0.001) after injection with [89Zr]Zr-DFOcyclo*-trastuzumab (16.2 ± 10.1%ID/g) and [89Zr]Zr-DFO-trastuzumab (19.6 ± 3.2%ID/g) than HER2+ SKOV-3 tumour-bearing mice (72.1 ± 14.6%ID/g and 93.1 ± 20.9%ID/g, respectively), while bone uptake was similar. CONCLUSION: 89Zr-labelled DFOcyclo* and DFOcyclo*-trastuzumab showed higher in vitro and in vivo stability than the current commonly used 89Zr-DFO-trastuzumab. DFOcyclo* is a promising candidate to become the new clinically used standard chelator for 89Zr immunoPET.


Subject(s)
Deferoxamine/chemistry , Positron Emission Tomography Computed Tomography/methods , Radioisotopes/chemistry , Zirconium/chemistry , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Deferoxamine/pharmacokinetics , Female , Humans , Mice , Tissue Distribution
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 1436-1439, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946163

ABSTRACT

The number of published peer-reviewed research articles has increased exponentially in the past decades, as has the degree of competitiveness in scientific publishing. Publication of scientific articles remains the gold standard for measuring research quality. In this context, quality is understood as to how rigorously the scientific method was applied. However, a critical disconnect exists between the continuous channel of projects fed to students by research laboratories, and the scientific quality of outcomes these students produce. Here, we present a process for the supervision of M.Sc. thesis projects conducted in research laboratories with the objective to increase productivity and quality. It is based on an iterative model of writing a scientific article naturally following the scientific method. This approach intends to maximize learning and development for the student, as well as productivity for the research laboratory by facilitating the publication of a peer-reviewed scientific article out of the thesis work.


Subject(s)
Writing , Humans , Learning , Longitudinal Studies , Peer Review , Publishing
20.
Phys Imaging Radiat Oncol ; 11: 54-60, 2019 Jul.
Article in English | MEDLINE | ID: mdl-33458278

ABSTRACT

BACKGROUND/PURPOSE: Tumor biology and patient smoking status have clear effects on the benefit of breast radiotherapy. This study developed treatment evaluation strategies that integrated dosimetry, tumor aggressiveness and smoking status for patients undergoing hypo-fractionated whole breast irradiation with simultaneous integrated boost. MATERIALS/METHODS: The evaluation method Plan Quality Metrics (PQM) was adapted for breast cancer. Radiotherapy (RT) benefit was assessed for three levels of tumor aggressiveness; RT risk was estimated using mean dose to organs at risk and published Excess Relative Risk per Gy data for lung cancer and cardiac mortality for smokers and non-smokers. Risk for contralateral breast cancer was also evaluated. PQM and benefit/risk was applied to four patient groups (n = 10 each). Plans using 3D conformal radiotherapy (3DCRT), 3DCRT plus intensity-modulated radiation therapy (IMRT), 3DCRT plus volumetric modulated arc therapy (VMAT) and VMAT were evaluated for each patient. RESULTS: 3DCRT-IMRT hybrid planning resulted in higher PQM score (median 87.0 vs. 3DCRT 82.4, p < 0.01), better dose conformity, lower doses to the heart, lungs and contralateral breast. Survival benefit was most predominant for patients with high-risk breast cancer (>7% and >4.5% gain for non-smokers and smokers). For smokers with intermediate- or low-risk breast cancer, RT induced mortality risk dominated for all techniques. When considering the risk of local recurrence, RT benefitted also smokers (>5% and >2% for intermediate- and low-risk cancer). CONCLUSIONS: PQM methodology was suggested for breast cancer radiotherapy evaluation. Further validation is needed. RT was beneficial for all patients with high risk of recurrence. A survival benefit for smokers with low or intermediate risk of recurrence could not be confirmed.

SELECTION OF CITATIONS
SEARCH DETAIL
...