Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 10408, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-26083864

ABSTRACT

Gold is a noble metal that, in comparison with silver and copper, has the advantage of corrosion resistance. Despite its high conductivity, chemical stability and biocompatibility, gold exhibits high plasticity, which limits its applications in some nanodevices. Here, we report an experimental and theoretical study on how to attain enhanced mechanical stability of gold nanotips. The gold tips were fabricated by chemical etching and further encapsulated with carbon nanocones via nanomanipulation. Atomic force microscopy experiments were carried out to test their mechanical stability. Molecular dynamics simulations show that the encapsulated nanocone changes the strain release mechanisms at the nanoscale by blocking gold atomic sliding, redistributing the strain along the whole nanostructure. The carbon nanocones are conducting and can induce magnetism, thus opening new avenues on the exploitation of transport, mechanical and magnetic properties of gold covered by sp(2) carbon at the nanoscale.

2.
J Phys Condens Matter ; 27(8): 083002, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25634863

ABSTRACT

In this article we review Raman studies of defects and dopants in graphene as well as the importance of both for device applications. First a brief overview of Raman spectroscopy of graphene is presented. In the following section we discuss the Raman characterization of three defect types: point defects, edges, and grain boundaries. The next section reviews the dependence of the Raman spectrum on dopants and highlights several common doping techniques. In the final section, several device applications are discussed which exploit doping and defects in graphene. Generally defects degrade the figures of merit for devices, such as carrier mobility and conductivity, whereas doping provides a means to tune the carrier concentration in graphene thereby enabling the engineering of novel material systems. Accurately measuring both the defect density and doping is critical and Raman spectroscopy provides a powerful tool to accomplish this task.

SELECTION OF CITATIONS
SEARCH DETAIL
...