Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1225: 158-67, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22251884

ABSTRACT

Small synthetic ligands for protein purification have become increasingly interesting with the growing need for cheap chromatographic materials for protein purification and especially for the purification of monoclonal antibodies (mAbs). Today, Protein A-based chromatographic resins are the most commonly used capture step in mAb down stream processing; however, the use of Protein A chromatography is less attractive due to toxic ligand leakage as well as high cost. Whether used as an alternative to the Protein A chromatographic media or as a subsequent polishing step, small synthetic peptide ligands have an advantage over biological ligands; they are cheaper to produce, ligand leakage by enzymatic degradation is either eliminated or significantly reduced, and they can in general better withstand cleaning in place (CIP) conditions such as 0.1M NaOH. Here, we present a novel synthetic peptide ligand for purification of human IgG. Immobilized on WorkBeads, an agarose-based base matrix from Bio-Works, the ligand has a dynamic binding capacity of up to 48 mg/mL and purifies IgG from harvest cell culture fluid with purities and recovery of >93%. The binding affinity is ∼105 M⁻¹ and the interaction is favorable and entropy-driven with an enthalpy penalty. Our results show that the binding of the Fc fragment of IgG is mediated by hydrophobic interactions and that elution at low pH is most likely due to electrostatic repulsion. Furthermore, we have separated aggregated IgG from non-aggregated IgG, indicating that the ligand could be used both as a primary purification step of IgG as well as a subsequent polishing step.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Chromatography, Affinity/methods , Peptides/chemistry , Peptides/metabolism , Adsorption , Antibodies, Monoclonal/metabolism , Chromatography, Affinity/instrumentation , Humans , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Immunoglobulin G/isolation & purification , Immunoglobulin G/metabolism , Ligands , Models, Molecular , Protein Binding , Sepharose/chemistry , Static Electricity , Thermodynamics
2.
J Chromatogr A ; 1218(32): 5487-97, 2011 Aug 12.
Article in English | MEDLINE | ID: mdl-21742336

ABSTRACT

A capillary-based model modified for characterization of monolithic cryogels is presented with key parameters like the pore size distribution, the tortuosity and the skeleton thickness employed for describing the porous structure characteristics of a cryogel matrix. Laminar flow, liquid dispersion and mass transfer in each capillary are considered and the model is solved numerically by the finite difference method. As examples, two poly(hydroxyethyl methacrylate) (pHEMA) based cryogel beds have been prepared by radical cryo-copolymerization of monomers and used to test the model. The axial dispersion behaviors, the pressure drop vs. flow rate performance as well as the non-adsorption breakthrough curves of different proteins, i.e., lysozyme, bovine serum albumin (BSA) and concanavalin A (Con A), at various flow velocities in the cryogel beds are measured experimentally. The lumped parameters in the model are determined by matching the model prediction with the experimental data. The results showed that for a given cryogel column, by using the model based on the physical properties of the cryogel (i.e., diameter, length, porosity, and permeability) together with the protein breakthrough curves one can obtain a reasonable estimate and detailed characterization of the porous structure properties of cryogel matrix, particularly regarding the number of capillaries, the capillary tortuousness, the pore size distribution and the skeleton thickness. The model is also effective with regards to predicting the flow performance and the non-adsorption breakthrough profiles of proteins at different flow velocities. It is thus expected to be applicable for characterizing the properties of cryogels and predicting the chromatographic performance under a given set of operating conditions.


Subject(s)
Chromatography, Liquid/instrumentation , Concanavalin A/isolation & purification , Hydrogels/chemistry , Muramidase/isolation & purification , Serum Albumin, Bovine/isolation & purification , Adsorption , Animals , Cattle , Concanavalin A/chemistry , Cryogels , Models, Chemical , Muramidase/chemistry , Porosity , Serum Albumin, Bovine/chemistry
3.
J Chromatogr A ; 1149(2): 158-68, 2007 May 18.
Article in English | MEDLINE | ID: mdl-17433342

ABSTRACT

A new type of fibre-based anion-exchange material for plasmid purification was developed. The basic material consisted of non-porous silica fibres with a mean diameter of 1.5 microm and a surface area of 2.4m(2)g(-1). The fibre surface was provided with several types of ligands, either by adsorption of polymers (chitosan or poly(ethyleneimine)) or by polymerization of amine-containing acrylic monomers onto a propyl methacrylate-silanized surface. The resulting polymer layers contained primary, tertiary or quaternary amines as ion-exchange groups. The packing density could be varied considerably, 9-34% (v/v). The loose packing structure provided excellent flow properties suitable for high-speed operations. The best overall performance was shown by silica fibres provided with tertiary amine polymers, having a plasmid-binding capacity of 0.9 mg ml(-1) (pre-purified plasmid) and a plasmid recovery of 62% (performance data remained stable though several adsorption cycles). The high flow rates possible with the fibre material made it especially useful when large volumes of cleared lysate were processed. The columns could be operated with retention of their adsorption properties at speeds of up to 1800 cm h(-1), equivalent to 0.5 column volumes per minute. The binding capacity was found to be lower than anticipated from the design of the fibres. Fluorescence imaging showing individual plasmid molecules indicated the fibre population to be heterogeneous with respect to plasmid adsorption, some fibres displaying poor binding properties. Possible reasons for this heterogeneity are discussed.


Subject(s)
Anion Exchange Resins , Plasmids/isolation & purification , Silicon Dioxide/chemistry , Microscopy, Electron, Scanning
4.
J Chromatogr A ; 1138(1-2): 84-94, 2007 Jan 05.
Article in English | MEDLINE | ID: mdl-17070823

ABSTRACT

Superporous agarose beads have wide, connecting flow pores allowing large molecules such as plasmids to be transported into the interior of the beads by convective flow. The pore walls provide additional surface for plasmid binding thus increasing the binding capacity of the adsorbent. Novel superporous agarose anion exchangers have been prepared, differing with respect to bead diameter, superpore diameter and type of anion-exchange functional group (poly(ethyleneimine) and quaternary amine). The plasmid binding capacities were obtained from breakthrough curves and compared with the binding capacity of homogeneous agarose beads of the same particle size. Significantly, the smaller diameter superporous agarose beads were found to have four to five times higher plasmid binding capacity than the corresponding homogeneous agarose beads. The experimentally determined plasmid binding capacity was compared with the theoretically calculated surface area for each adsorbent and fair agreement was found. Confocal microscopy studies of beads with adsorbed, fluorescently labelled plasmids aided in the interpretation of the results. Superporous poly(ethyleneimine)-substituted beads with a high ion capacity (230 micromol/ml) showed a plasmid binding of 3-4 mg/ml adsorbent. Superporous quaternary amine-substituted beads had a lower ion capacity (81 micromol/ml) and showed a correspondingly lower plasmid binding capacity (1-2 mg/ml adsorbent). In spite of the lower capacity, the beads with quaternary amine ligand were preferred, due to their much better plasmid recovery (70-100% recovery). Interestingly, both capacity and recovery was improved when the plasmid adsorption step was carried out in the presence of a moderate salt concentration. The most suitable superporous bead type (45-75 microm diameter beads; 4 microm superpores; quaternary amine ligand) was chosen for the capture of plasmid DNA from a clarified alkaline lysate. Two strategies were evaluated, one with and one without enzymatic digestion of RNA. The strategy without RNase gave high plasmid recovery, quantitative removal of protein and a 70% reduction in RNA.


Subject(s)
Anions/chemistry , Chromatography, Agarose/methods , Chromatography, Ion Exchange/methods , Plasmids/isolation & purification , Sepharose/chemistry , Electrophoresis, Agar Gel , Microscopy, Confocal , Microscopy, Electron, Scanning , Porosity , Sepharose/ultrastructure
5.
J Chromatogr A ; 1057(1-2): 115-24, 2004 Nov 19.
Article in English | MEDLINE | ID: mdl-15584230

ABSTRACT

An integrated process for purifying a 6.1 kilo base pair (kbp) plasmid from a clarified Escherichia coli cell lysate based on an ultra/diafiltration step combined with polymer/polymer aqueous two-phase system and a new type of chromatography is described. The process starts with a volume reduction (ultrafiltration) and buffer exchange (diafiltration) of the clarified lysate using a hollow fibre membrane system. The concentrated and desalted plasmid solution is then extracted in a thermoseparating aqueous two-phase system, where the contaminants (RNA and proteins) to a large extent are removed. While the buffer exchange (diafiltration) is necessary in order to extract the plasmid DNA exclusively to the top phase, experiments showed that the ultrafiltration step increased the productivity of the aqueous two-phase system by a factor of more than 10. The thermoseparated water phase was then subjected to a polishing step using lid bead chromatography. Lid beads are a new type of restricted access chromatography beads, here with a positively charged inner core that adsorbed the remaining RNA while its inert surface layer prevented adsorption of the plasmid DNA thus passing in the flow-through of the column. Differently-sized plasmid DNA in the range of 2.7-20.5 kbp were also partitioned in the aqueous two-phase system. Within this size range, all plasmid DNA was exclusively extracted to the top phase. The complete process is free of additives and easy scalable for use in large scale production of plasmid DNA. The overall process yield for plasmid DNA was 69%.


Subject(s)
Chromatography, Liquid/methods , DNA/isolation & purification , Filtration/methods , Membranes, Artificial , Plasmids , Electrophoresis, Agar Gel
6.
J Chromatogr A ; 1038(1-2): 131-40, 2004 Jun 04.
Article in English | MEDLINE | ID: mdl-15233529

ABSTRACT

We have prepared a new type of anion exchanger, which effectively discriminates between RNA and plasmid DNA. The material is based on a Sephacryl S-500 HR matrix provided with quartenary amine anion-exchange groups. A distinguishing feature of the beads is that a thin (2-3 microm) outer layer of the beads lacks ion-exchange groups. In the synthesis of these beads the vinyl groups in the outer layer of vinylalkyl substituted Sephacryl S-500 HR beads are reacted with bromine. The resulting layer of bromoalkyl groups are hydrolysed, creating an inert outer layer of hydroxyalkyl groups. Finally, bromination and trimethylamine reactions of the inner vinyl groups provide the beads with a core of cationic groups. Large plasmid molecules will not bind to such beads since they are too large to enter the pores and therefore cannot come into contact with the charged matrix in the inner parts of the beads. RNA and protein molecules present in a cleared lysate, on the other hand, readily enter the pores and become adsorbed. A two-column strategy was developed for plasmid purification (recombinant pBluescript, 5.9 kilo base pairs, kbp). The first column was packed with the restricted access anion-exchanger beads (lid beads) and the second column with normal ion-exchange material (same ligand density as the lid beads). Diluted (3x), cleared lysate was pumped through the tandem columns. The first column was subsequently disconnected from the system and the purified plasmid adsorbed on the second column was eluted in a concentrated form (6x) and with 89% recovery. The two-column procedure removed 99.5% of the RNA and 96% of the proteins.


Subject(s)
Anion Exchange Resins , DNA/isolation & purification , Plasmids/isolation & purification , Chromatography, Ion Exchange/methods , Electrophoresis, Agar Gel
7.
Article in English | MEDLINE | ID: mdl-15177169

ABSTRACT

The demand for highly purified plasmids in gene therapy and plasmid-based vaccines requires large-scale production of pharmaceutical-grade plasmid. Plasmid DNA was selectively precipitated from a clarified alkaline lysate using the polycation poly(N,N'-dimethyldiallylammonium) chloride which formed insoluble polyelectrolyte complex (PEC) with the plasmid DNA. Soluble PECs of DNA with polycations have earlier been used for cell transformation, but now the focus has been on insoluble PECs. Both DNA and RNA form stable PECs with synthetic polycations. However, it was possible to find a range of salt concentration where plasmid DNA was quantitatively precipitated whereas RNA remained in solution. The precipitated plasmid DNA was resolubilised at high salt concentration and the polycation was removed by gel-filtration.


Subject(s)
DNA/isolation & purification , Electrolytes/chemistry , Plasmids/isolation & purification , Chromatography, Gel , Chromatography, Ion Exchange , DNA/chemistry , Electrophoresis, Agar Gel , Electrophoresis, Polyacrylamide Gel
8.
J Chromatogr A ; 1024(1-2): 95-104, 2004 Jan 23.
Article in English | MEDLINE | ID: mdl-14753711

ABSTRACT

The primary purification of a 6.1 kilo base pair (kbp) plasmid from a desalted alkaline lysate has been accomplished by a thermoseparating aqueous two-phase system [(50% ethylene oxide-50% propylene oxide)-Dextran T 500]. The partitioning of the different nucleic acids (plasmid DNA, RNA, genomic DNA) in the thermoseparating aqueous two-phase system was followed both qualitatively by agarose gel electrophoresis and quantitatively by analytical chromatography (size exclusion- and anion-exchange mode) and PicoGreen fluorescence analysis. The experimental results showed a complete recovery of the plasmid DNA to the top phase, while 80% of total RNA and 58% of total protein was discarded to the bottom phase. Moreover, a 3.8-fold volume reduction of the plasmid DNA solution was achieved. By using a final thermoseparating step, the EO50PO50 polymer could be efficiently recycled, resulting in plasmid solution containing less than 1% polymer. The developed thermoseparating aqueous two-phase system shows great potential for the large-scale processing of plasmid DNA.


Subject(s)
DNA/isolation & purification , Escherichia coli/genetics , Plasmids/isolation & purification , Electrophoresis, Agar Gel
9.
Article in English | MEDLINE | ID: mdl-12504199

ABSTRACT

A new type of agarose bead, superporous agarose, was used as a gel support for immobilization of human red blood cells (RBCs) mediated by wheat germ lectin. The number of immobilized cells was similar to that obtained with commercial wheat germ lectin-agarose but the cell stability appeared to be superior. This allowed improved frontal affinity chromatographic analyses of cytochalasin B (CB)-binding to the glucose transporter GLUT1 which established a ratio of one CB-binding site per GLUT1 dimer for both plain RBCs or those treated with different poly amino acids. The measured dissociation constants, 70+/-14 nM for CB and 12+/-3 mM for glucose binding to GLUT1, are similar to those reported earlier.


Subject(s)
Erythrocytes , Lectins , Erythrocytes/metabolism , Glucose Transporter Type 1 , Humans , Monosaccharide Transport Proteins/metabolism , Sepharose
SELECTION OF CITATIONS
SEARCH DETAIL
...