Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Chemistry ; : e202401835, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869969

ABSTRACT

Femtosecond fluorescence upconversion experiments were combined with CASPT2 and time dependent DFT calculations to characterize the excited state dynamics of the mutagenic etheno adduct 1,N2-etheno-2'-deoxyguanosine (εdG). This endogenously formed lesion is attracting great interest because of its ubiquity in human tissues and its highly mutagenic properties. The εdG fluorescence is strongly modified with respect to that of the canonical nucleoside dG, notably by an about 6-fold increase in fluorescence lifetime and quantum yield at neutral pH. In addition, femtosecond fluorescence upconversion experiments reveal the presence of two emission bands with maxima at 335 nm for the shorter-lived and 425 nm for the longer-lived. Quantum mechanical calculations rationalize these findings and provide absorption and fluorescence spectral shapes similar to the experimental ones. Two different bright minima are located on the potential energy surface of the lowest energy singlet excited state. One planar, slightly less stable, is associated with the emission at 335 nm, whereas the other, with a bent etheno ring, is associated with the red-shifted emission.

2.
J Phys Chem Lett ; 14(8): 2141-2147, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36802626

ABSTRACT

During the past few years, several studies reported that a significant part of the intrinsic fluorescence of DNA duplexes decays with surprisingly long lifetimes (1-3 ns) at wavelengths shorter than the ππ* emission of their monomeric constituents. This high-energy nanosecond emission (HENE), hardly discernible in the steady-state fluorescence spectra of most duplexes, was investigated by time-correlated single-photon counting. The ubiquity of HENE contrasts with the paradigm that the longest-lived excited states correspond to low-energy excimers/exciplexes. Interestingly, the latter were found to decay faster than the HENE. So far, the excited states responsible for HENE remain elusive. In order to foster future studies for their characterization, this Perspective presents a critical summary of the experimental observations and the first theoretical approaches. Moreover, some new directions for further work are outlined. Finally, the obvious need for computations of the fluorescence anisotropy considering the dynamic conformational landscape of duplexes is stressed.


Subject(s)
DNA , Fluorescence , Spectrometry, Fluorescence , Time Factors
3.
J Phys Chem B ; 127(1): 172-179, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36577031

ABSTRACT

The paper deals with the fluorescence of guanine quadruplexes (G4) formed by association of two DNA strands d(GGGGTTTTGGGG) in the presence of K+ cations, noted as OXY/K+ in reference to the protozoon Oxytricha nova, whose telomere contains TTTTGGGG repeats. They were studied by steady-state and time-resolved techniques, time-correlated single photon counting, and fluorescence upconversion. The maximum of the OXY/K+ fluorescence spectrum is located at 334 nm, and the quantum yield is 5.8 × 10-4. About 75% of the photons are emitted before 100 ps and stem from ππ* states, possibly with a small contribution of charge transfer. Time-resolved fluorescence anisotropy measurements indicate that ultrafast (<330 fs) excitation transfer, due to internal conversion among exciton states, is more efficient in OXY/K+ compared to previously studied G4 structures. This is attributed to the arrangement of the peripheral thymines in two diagonal loops with restricted mobility, facilitating the interaction among them and with guanines. Thymines should also be responsible for a weak intensity excimer/exciplex emission band, peaking at 445 nm. Finally, the longest living fluorescence component (∼2.1 ns) is observed at the blue side of the spectrum. So far, high-energy long-lived emitting states had been reported only for double-stranded structures but not for G4.


Subject(s)
G-Quadruplexes , DNA/chemistry , Spectrometry, Fluorescence , Telomere , Guanine/chemistry
4.
Molecules ; 27(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35684495

ABSTRACT

The publication deals with polymeric pA●pT and oligomeric A20●T20 DNA duplexes whose fluorescence is studied by time-correlated single photon counting. It is shown that their emission on the nanosecond timescale is largely dominated by high-energy components peaking at a wavelength shorter than 305 nm. Because of their anisotropy (0.02) and their sensitivity to base stacking, modulated by the duplex size and the ionic strength of the solution, these components are attributed to mixed ππ*/charge transfer excitons. As high-energy long-lived excited states may be responsible for photochemical reactions, their identification via theoretical studies is an important challenge.


Subject(s)
Adenine , Thymine , DNA , Physical Phenomena , Ultraviolet Rays
5.
J Phys Chem Lett ; 13(1): 393-399, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-34985898

ABSTRACT

Using femtosecond transient absorption (fs-TA), we investigate the hot exciton relaxation dynamics in strongly confined lead iodide perovskite nanoplatelets (NPLs). The large quantum and dielectric confinement leads to discrete excitonic transitions and strong Stark features in the TA spectra. This prevents the use of conventional relaxation analysis methods extracting the carrier temperature or measuring the buildup of the band-edge bleaching. Instead, we show that the TA spectral line shape near the band-edge reflects the state of the system, which can be used to probe the exciton cooling dynamics. The ultrafast hot exciton relaxation in one- to three- monolayer-thick NPLs confirms the absence of intrinsic phonon bottleneck. However, excitation fluence-dependent measurements reveal a hot phonon bottleneck effect, which is found to be independent of the nature of the internal cations but strongly affected by the ligands and/or sample surface state. Together, these results suggest a role of the surface ligands in the cooling process.

6.
J Phys Chem Lett ; 13(1): 251-257, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-34968067

ABSTRACT

Joint femtosecond fluorescence upconversion experiments and theoretical calculations provide a hitherto unattained degree of characterization and understanding of the mutagenic etheno adduct 3,N4-etheno-2'-deoxycytidine (εdC) excited state relaxation. This endogenously formed lesion is attracting great interest because of its ubiquity in human tissues and its highly mutagenic properties. The εdC fluorescence is modified with respect to that of the canonical base dC, with a 3-fold increased lifetime and quantum yield at neutral pH. This behavior is amplified upon protonation of the etheno ring (εdCH+). Quantum mechanical calculations show that the lowest energy state ππ*1 is responsible for the fluorescence and that the main nonradiative decay pathway to the ground state goes through an ethene-like conical intersection, involving the out-of-plane motion of the C5 and C6 substituents. This conical intersection is lower in energy than the ππ* state (ππ*1) minimum, but a sizable energy barrier explains the increase of εdC and εdCH+ fluorescence lifetimes with respect to that of dC.


Subject(s)
Cytidine/chemistry , Mutagens/chemistry , Quantum Theory , Thermodynamics , Fluorescence Polarization , Humans , Time Factors
7.
Photochem Photobiol Sci ; 20(10): 1257-1271, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34542893

ABSTRACT

We present a study of the excited state relaxation dynamics of the photosensitizer P1 used in p-type dye-sensitized solar cells. Comparative femtosecond fluorescence upconversion measurements in solution and in films show that the dye undergoes a picosecond electronic relaxation from the bright Franck-Condon (FC) state to a low-emitting charge-transfer (CT) state in polar environment. The fluorescence is moderately quenched in solution and on the mesoporous Al2O3 isolator but dramatically more on NiO semiconductor. We assign this sub-picosecond process to the hole injection thus confirming that the electron transfer is from the FC state directly into the NiO valence band.

8.
Acc Chem Res ; 54(5): 1226-1235, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33587613

ABSTRACT

The intrinsic fluorescence of nucleic acids is extremely weak compared to that of the fluorescent labels used to probe their structural and functional behavior. Thus, for technical reasons, the investigation of the intrinsic DNA fluorescence was limited for a long time. But with the improvement in spectroscopic techniques, the situation started to change around the turn of the century. During the past two decades, various factors modulating the static and dynamic properties of the DNA fluorescence have been determined; it was shown that, under certain conditions, quantum yields may be up 100 times higher than what was known so far. The ensemble of these studies opened up new paths for the development of label-free DNA fluorescence for biochemical applications. In parallel, these studies have shed new light on the primary processes leading to photoreactions that damage DNA when it absorbs UV radiation.We have been studying a variety of DNA systems, ranging from the monomeric nucleobases to double-stranded and four-stranded structures using fluorescence spectroscopy. The specificity of our work resides in the quantitative association of the steady-state fluorescence spectra with time-resolved data recorded from the femtosecond to the nanosecond timescales, made possible by the development of specific methodologies.Among others, our fluorescence studies provide information on the energy and the polarization of electronic transitions. These are valuable indicators for the evolution of electronic excitations in complex systems, where the electronic coupling between chromophores plays a key role. Highlighting collective effects that originate from electronic interactions in DNA multimers is the objective of the present Account.In contrast to the monomeric chromophores, whose fluorescence decays within a few picoseconds, that of DNA multimers persists on the nanosecond timescale. Even if long-lived states represent only a small fraction of electronic excitations, they may be crucial to the DNA photoreactivity because the probability to reach reactive conformations increases over time, owing to the incessant structural dynamics of nucleic acids.Our femtosecond studies have revealed that an ultrafast excitation energy transfer takes place among the nucleobases within duplexes and G-quadruplexes. Such an ultrafast process is possible when collective states are populated directly upon photon absorption. At much longer times, we discovered an unexpected long-lived high-energy emission stemming from what was coined "HELM excitons". These collective states, whose emission increases with the duplex size, could be responsible for the delayed fluorescence of ππ* states observed for genomic DNA.Most studies dealing with excited-state relaxation in DNA were carried out with excitation in the absorption band peaking at around 260 nm. We went beyond this and also performed the first time-resolved study with excitation in the UVA spectral range, where a very weak absorption tail is present. The resulting fluorescence decays are much slower and the fluorescence quantum yields are much higher than for UVC excitation. We showed that the base pairing of DNA strands enhances the UVA fluorescence and, in parallel, increases the photoreactivity because it modifies the nature of the involved collective excited states.


Subject(s)
DNA/chemistry , Fluorescence , Energy Transfer , G-Quadruplexes , Spectrometry, Fluorescence , Ultraviolet Rays
9.
Nanomaterials (Basel) ; 10(10)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977504

ABSTRACT

We study the hot charge carrier relaxation process in weakly confined hybrid lead iodide perovskite colloidal nanostructures, FAPbI3 (FA = formaminidium), using femtosecond transient absorption (TA). We compare the conventional analysis method based on the extraction of the carrier temperature (Tc) by fitting the high-energy tail of the band-edge bleach with a global analysis method modeling the continuous evolution of the spectral lineshape in time using a simple sequential kinetic model. This practical approach results in a more accurate way to determine the charge carrier relaxation dynamics. At high excitation fluence (density of charge carriers above 1018 cm-3), the cooling time increases up to almost 1 ps in thick nanoplates (NPs) and cubic nanocrystals (NCs), indicating the hot phonon bottleneck effect. Furthermore, Auger heating resulting from the multi-charge carrier recombination process slows down the relaxation even further to tens and hundreds of picoseconds. These two processes could only be well disentangled by analyzing simultaneously the spectral lineshape and amplitude evolution.

10.
Sci Rep ; 10(1): 5071, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32193504

ABSTRACT

Despite the tremendous importance of so-called ionizing radiations (X-rays, accelerated electrons and ions) in cancer treatment, most studies on their effects have focused on the ionization process itself, and neglect the excitation events the radiations can induce. Here, we show that the excited states of DNA exposed to accelerated electrons can be studied in the picosecond time domain using a recently developed cathodoluminescence system with high temporal resolution. Our study uses a table-top ultrafast, UV laser-triggered electron gun delivering picosecond electron bunches of keV energy. This scheme makes it possible to directly compare time-resolved cathodoluminescence with photoluminescence measurements. This comparison revealed qualitative differences, as well as quantitative similarities between excited states of DNA upon exposure to electrons or photons.


Subject(s)
DNA/radiation effects , Electrons/adverse effects , Luminescent Measurements/methods , Radiation, Ionizing , Time Factors
11.
Molecules ; 25(4)2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32070032

ABSTRACT

The fluorescent base guanine analog, 8-vinyl-deoxyguanosine (8vdG), is studied in solution using a combination of optical spectroscopies, notably femtosecond fluorescence upconversion and quantum chemical calculations, based on time-dependent density functional theory (TD-DFT) and including solvent effect by using a mixed discrete-continuum model. In all investigated solvents, the fluorescence is very long lived (3-4 ns), emanating from a stable excited state minimum with pronounced intramolecular charge-transfer character. The main non-radiative decay channel features a sizeable energy barrier and it is affected by the polarity and the H-bonding properties of the solvent. Calculations provide a picture of dynamical solvation effects fully consistent with the experimental results and show that the photophysical properties of 8vdG are modulated by the orientation of the vinyl group with respect to the purine ring, which in turn depends on the solvent. These findings may have importance for the understanding of the fluorescence properties of 8vdG when incorporated in a DNA helix.


Subject(s)
Deoxyguanosine/chemistry , Solvents/chemistry , Spectrometry, Fluorescence/methods , Water/chemistry , Hydrogen Bonding , Molecular Structure , Quantum Theory
12.
Molecules ; 25(3)2020 Jan 29.
Article in English | MEDLINE | ID: mdl-32013184

ABSTRACT

Sulfur-substituted DNA and RNA nucleobase derivatives (a.k.a., thiobases) are an important family of biomolecules. They are used as prodrugs and as chemotherapeutic agents in medical settings, and as photocrosslinker molecules in structural-biology applications. Remarkably, excitation of thiobases with ultraviolet to near-visible light results in the population of long-lived and reactive triplet states on a time scale of hundreds of femtoseconds and with near-unity yields. This efficient nonradiative decay pathway explains the vanishingly small fluorescence yields reported for the thiobases and the scarcity of fluorescence lifetimes in the literature. In this study, we report fluorescence lifetimes for twelve thiobase derivatives, both in aqueous solution at physiological pH and in acetonitrile. Excitation is performed at 267 and 362 nm, while fluorescence emission is detected at 380, 425, 450, 525, or 532 nm. All the investigated thiobases reveal fluorescence lifetimes that decay in a few hundreds of femtoseconds and with magnitudes that depend and are sensitive to the position and degree of sulfur-atom substitution and on the solvent environment. Interestingly, however, three thiopyrimidine derivatives (i.e., 2-thiocytidine, 2-thiouridine, and 4-thiothymidine) also exhibit a small amplitude fluorescence component of a few picoseconds in aqueous solution. Furthermore, the N-glycosylation of thiobases to form DNA or RNA nucleoside analogues is demonstrated as affecting their fluorescence lifetimes. In aqueous solution, the fluorescence decay signals exciting at 267 nm are equal or slower than those collected exciting at 362 nm. In acetonitrile, however, the fluorescence decay signals recorded upon 267 nm excitation are, in all cases, faster than those measured exciting at 362 nm. A comparison to the literature values show that, while both the DNA and RNA nucleobase and thiobase derivatives exhibit sub-picosecond fluorescence lifetimes, the 1ππ* excited-state population in the nucleobase monomers primarily decay back to the ground state, whereas it predominantly populates long-lived and reactive triplet states in thiobase monomers.


Subject(s)
DNA/chemistry , Fluorescence , Molecular Probe Techniques , RNA/chemistry , Sulfur/chemistry , Fluorescent Dyes , Solvents
13.
J Phys Chem Lett ; 10(21): 6873-6877, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31613628

ABSTRACT

G-quadruplexes (G4) are four-stranded DNA/RNA structures playing a key role in many biological functions and promising for nanotechnology applications. Here, combining theoretical calculations and multiscale time-resolved fluorescence, we describe, for the first time, an ensemble of photoactivated processes involving the guanines of the G4 core. We use as showcase the G4 formed by the human telomeric sequence GGG(TTAGGG)3 in the presence of Na+ ions. According to quantum mechanical/molecular mechanics calculations, the hyperchromism at the red part of the absorption spectrum, typical of G4 structures, arises mainly from the inner Na+ ions. Various relaxation pathways, leading to excited states localized on individual bases, neutral excimers, and excited charge transfer states between two guanines or a guanine and a thymine in the loop, are mapped. Their fingerprints are detected in the fluorescence anisotropies and the fluorescence decays, spanning five decades of time. Finally, a reaction funnel leading to guanine dimerization is identified.

14.
J Phys Chem Lett ; 10(17): 5076-5081, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31409074

ABSTRACT

There is a growing consensus that the charge separation taking place in dye-sensitized solar cells is a multiscale process occurring on a times scale from a few to hundreds of picoseconds. We studied the excited-state dynamics of the robust and efficient push-pull dye RK1 in solution, on mesoporous films and in complete photovoltaics cells by femtosecond fluorescence upconversion and transient absorption. In a polar environment and cells, the dynamics at early times are dominated by an intramolecular electronic relaxation, while electron injection is predominant on thin films only. In cells, the electron injection process becomes visible at a later stage, from tens to hundreds of picoseconds. Our study shows that it is crucial to record and analyze full time-resolved fluorescence spectra in order to obtain wavelength-independent dynamics and get a correct description of the nature and the population of the excited state.

15.
Phys Chem Chem Phys ; 21(14): 7685-7696, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30912774

ABSTRACT

A fluorescence study of N1-(ß-d-glucopyranosyl)-N4-[2-acridin-9(10H)-onyl]-cytosine (GLAC), the first fluorescent potent inhibitor of glycogen phosphorylase (GP), in neutral aqueous solution, is presented herein. Quantum chemistry (TD-DFT) calculations show the existence of several conformers both in the ground and first excited states. They result from rotations of the acridone and cytosine moieties around an NH bridge which may lead to the formation of non-emitting charge-transfer states. The fingerprints of various conformers have been detected by time-resolved fluorescence spectroscopy (fluorescence upconversion and time-correlated single photon counting) and identified using as criteria their energy, polarization and relative population resulting from computations. Such an analysis should contribute to the design of new GP inhibitors with better fluorescence properties, suitable for imaging applications.


Subject(s)
Enzyme Inhibitors/metabolism , Glycogen Phosphorylase/metabolism , Quantum Theory , Acridones/chemical synthesis , Acridones/chemistry , Acridones/metabolism , Benzoates/chemical synthesis , Benzoates/chemistry , Benzoates/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glycogen Phosphorylase/antagonists & inhibitors , Spectrometry, Fluorescence , Thermodynamics
16.
J Phys Chem A ; 122(25): 5533-5544, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29856624

ABSTRACT

There is a high interest in the development of new push-pull dyes for the use in dye sensitized solar cells. The pronounced charge transfer character of the directly photoexcited state is in principle favorable for a charge injection. Here, we report a time-resolved fluorescence study of a triphenylamine-bithiophene-naphthalimide dye in four solvents of varying polarity using fluorescence upconversion. The recording of femtosecond time-resolved fluorescence spectra corrected for the group velocity dispersion allows for a detailed analysis discriminating between spectral shifts and total intensity decays. After photoexcitation, the directly populated state (S1/FC) evolves toward a relaxed charge transfer state (S1/CT). This S1/CT state is characterized by a lower radiative transition moment and a higher nonradiative quenching. The fast dynamic shift of the fluorescence band is well described by solvation dynamics in polar solvents, but less so in nonpolar solvents, hinting that the excited-state relaxation process occurs on a free energy surface whose topology is strongly governed by the solvent polarity. This study underlines the influence of the environment on the intramolecular charge transfer (ICT) process, and the necessity to analyze time-resolved data in detail when solvation and ICT occur simultaneously.

18.
J Clin Hypertens (Greenwich) ; 19(11): 1070-1077, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28834144

ABSTRACT

In the current study, the authors sought to assess whether the time rate of systolic and diastolic blood pressure variation is associated with advanced subclinical stages of carotid atherosclerosis and plaque echogenicity assessed by gray scale median. The authors recruited 237 consecutive patients with normotension and hypertension who underwent 24-hour ambulatory blood pressure monitoring and carotid artery ultrasonography. There was an independent association between low 24-hour systolic time rate and increased echogenicity of carotid plaques (adjusted odds ratio for highest vs lower tertiles of gray scale median, 0.470; 95% confidence interval, 0.245-0.902 [P = .023]). Moreover, increased nighttime diastolic time rate independently correlated with the presence (adjusted odds ratio, 1.328; P = .015) and number of carotid plaques (adjusted odds ratio, 1.410; P = .003). These results indicate differential associations of the systolic and diastolic components of time rate of blood pressure variation with the presence, extent, and composition of carotid plaques and suggest that when blood pressure variation is assessed, both components should be considered.


Subject(s)
Blood Pressure/physiology , Carotid Arteries , Carotid Artery Diseases , Plaque, Atherosclerotic/diagnostic imaging , Aged , Asymptomatic Diseases , Blood Pressure Determination/methods , Carotid Arteries/diagnostic imaging , Carotid Arteries/physiopathology , Carotid Artery Diseases/diagnosis , Carotid Artery Diseases/physiopathology , Female , Humans , Hypertension/diagnosis , Hypertension/physiopathology , Male , Middle Aged , Time Factors , Ultrasonography/methods
19.
Chemistry ; 23(37): 8800-8805, 2017 Jul 03.
Article in English | MEDLINE | ID: mdl-28493496

ABSTRACT

The design and synthesis of a glucose-based acridone derivative (GLAC), a potent inhibitor of glycogen phosphorylase (GP) are described. GLAC is the first inhibitor of glycogen phosphorylase, the electronic absorption properties of which are clearly distinguishable from those of the enzyme. This allows probing subtle interactions in the catalytic site. The GLAC absorption spectra, associated with X-ray crystallography and quantum chemistry calculations, reveal that part of the catalytic site of GP behaves as a highly basic environment in which GLAC exists as a bis-anion. This is explained by water-bridged hydrogen-bonding interactions with specific catalytic site residues.


Subject(s)
Enzyme Inhibitors/chemistry , Glycogen Phosphorylase/antagonists & inhibitors , Acridones/chemistry , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Enzyme Inhibitors/metabolism , Glucose/chemistry , Glycogen Phosphorylase/metabolism , Hydrogen Bonding , Quantum Theory , Static Electricity
20.
Chimia (Aarau) ; 71(1-2): 18-25, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28259191

ABSTRACT

The interaction dynamics between the drug flurbiprofen (FBP) and human serum albumin (HSA) has been investigated by time-resolved fluorescence spectroscopy, combining femtosecond fluorescence upconversion and picosecond time-correlated single photon counting. In order to obtain additional information on the drug/ protein interaction, several covalently linked model dyads, composed of FBP and tryptophan or tyrosine, were also studied. For all systems, the main feature was a remarkable dynamic FBP fluorescence quenching, more prominent in the dyads than in the protein complex. All systems also displayed a clear stereoselectivity depending on the (S)- or (R)-form of FBP, that was strongly influenced by the conformational arrangement of the investigated chromophores.


Subject(s)
Amino Acids/chemistry , Fluorescence , Flurbiprofen/chemistry , Serum Albumin/chemistry , Humans , Macromolecular Substances/chemistry , Models, Molecular , Molecular Structure , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...