Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Toxins (Basel) ; 13(11)2021 11 22.
Article in English | MEDLINE | ID: mdl-34822608

ABSTRACT

Hemolytic Uremic Syndrome (HUS) associated with Shiga-toxigenic Escherichia coli (STEC) infections is the principal cause of acute renal injury in pediatric age groups. Shiga toxin type 2 (Stx2) has in vitro cytotoxic effects on kidney cells, including human glomerular endothelial (HGEC) and Vero cells. Neither a licensed vaccine nor effective therapy for HUS is available for humans. Recombinant antibodies against Stx2, produced in bacteria, appeared as the utmost tool to prevent HUS. Therefore, in this work, a recombinant FabF8:Stx2 was selected from a human Fab antibody library by phage display, characterized, and analyzed for its ability to neutralize the Stx activity from different STEC-Stx2 and Stx1/Stx2 producing strains in a gold standard Vero cell assay, and the Stx2 cytotoxic effects on primary cultures of HGEC. This recombinant Fab showed a dissociation constant of 13.8 nM and a half maximum effective concentration (EC50) of 160 ng/mL to Stx2. Additionally, FabF8:Stx2 neutralized, in different percentages, the cytotoxic effects of Stx2 and Stx1/2 from different STEC strains on Vero cells. Moreover, it significantly prevented the deleterious effects of Stx2 in a dose-dependent manner (up to 83%) in HGEC and protected this cell up to 90% from apoptosis and necrosis. Therefore, this novel and simple anti-Stx2 biomolecule will allow further investigation as a new therapeutic option that could improve STEC and HUS patient outcomes.


Subject(s)
Antibodies, Monoclonal/pharmacology , Hemolytic-Uremic Syndrome/prevention & control , Immunoglobulin Fab Fragments/immunology , Shiga Toxin 2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Apoptosis/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Epithelial Cells/pathology , Humans , Immunoglobulin Fab Fragments/administration & dosage , Kidney Glomerulus/cytology , Kidney Glomerulus/drug effects , Kidney Glomerulus/pathology , Recombinant Proteins , Shiga Toxin 1/immunology , Shiga Toxin 1/toxicity , Shiga Toxin 2/toxicity , Shiga-Toxigenic Escherichia coli/immunology , Vero Cells
2.
Toxins, v. 13, n. 11, 825, nov. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4009

ABSTRACT

Hemolytic Uremic Syndrome (HUS) associated with Shiga-toxigenic Escherichia coli (STEC) infections is the principal cause of acute renal injury in pediatric age groups. Shiga toxin type 2 (Stx2) has in vitro cytotoxic effects on kidney cells, including human glomerular endothelial (HGEC) and Vero cells. Neither a licensed vaccine nor effective therapy for HUS is available for humans. Recombinant antibodies against Stx2, produced in bacteria, appeared as the utmost tool to prevent HUS. Therefore, in this work, a recombinant FabF8:Stx2 was selected from a human Fab antibody library by phage display, characterized, and analyzed for its ability to neutralize the Stx activity from different STEC-Stx2 and Stx1/Stx2 producing strains in a gold standard Vero cell assay, and the Stx2 cytotoxic effects on primary cultures of HGEC. This recombinant Fab showed a dissociation constant of 13.8 nM and a half maximum effective concentration (EC50) of 160 ng/mL to Stx2. Additionally, FabF8:Stx2 neutralized, in different percentages, the cytotoxic effects of Stx2 and Stx1/2 from different STEC strains on Vero cells. Moreover, it significantly prevented the deleterious effects of Stx2 in a dose-dependent manner (up to 83%) in HGEC and protected this cell up to 90% from apoptosis and necrosis. Therefore, this novel and simple anti-Stx2 biomolecule will allow further investigation as a new therapeutic option that could improve STEC and HUS patient outcomes.

3.
Microorganisms ; 7(10)2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31623385

ABSTRACT

A recent article by Castro et al. describes a systematic review of Shiga-toxin producingEscherichia coli (STEC) in Brazil. [...].

4.
Microorganisms ; 7(9)2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31438570

ABSTRACT

Shiga toxin (Stx)-producing Escherichia coli (STEC) and its subgroup enterohemorrhagic E. coli are important pathogens involved in diarrhea, which may be complicated by hemorrhagic colitis and hemolytic uremic syndrome, the leading cause of acute renal failure in children. Early diagnosis is essential for clinical management, as an antibiotic treatment in STEC infections is not recommended. Previously obtained antibodies against Stx1 and Stx2 toxins were employed to evaluate the sensitivity and specificity of the latex Agglutination test (LAT), lateral flow assay (LFA), and capture ELISA (cEIA) for STEC detection. The LAT (mAb Stx1 plus mAb stx2) showed 99% sensitivity and 97% specificity. Individually, Stx1 antibodies showed 95.5% and 94% sensitivity and a specificity of 97% and 99% in the cEIA and LFA assay, respectively. Stx2 antibodies showed a sensitivity of 92% in both assays and a specificity of 100% and 98% in the cEIA and LFA assay, respectively. These results allow us to conclude that we have robust tools for the diagnosis of STEC infections.

5.
Microorganisms ; 7(7)2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31288487

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) O113:H21 strains are associated with human diarrhea and some strains may cause hemolytic-uremic syndrome (HUS). In Brazil, these strains are commonly found in cattle but, so far, were not isolated from HUS patients. Here, a system biology approach was used to investigate the differential transcriptomic and phenotypic responses of enterocyte-like Caco-2 cells to two STEC O113:H21 strains with similar virulence factor profiles (i.e. expressing stx2, ehxA, epeA, espA, iha, saa, sab, and subA): EH41 (Caco-2/EH41), isolated from a HUS patient in Australia, and Ec472/01 (Caco-2/Ec472), isolated from bovine feces in Brazil, during a 3 h period of bacteria-enterocyte interaction. Gene co-expression network analysis for Caco-2/EH41 revealed a quite abrupt pattern of topological variation along 3 h of enterocyte-bacteria interaction when compared with networks obtained for Caco-2/Ec472. Transcriptional module characterization revealed that EH41 induces inflammatory and apoptotic responses in Caco-2 cells just after the first hour of enterocyte-bacteria interaction, whereas the response to Ec472/01 is associated with cytoskeleton organization at the first hour, followed by the expression of immune response modulators. Scanning electron microscopy showed more intense microvilli destruction in Caco-2 cells exposed to EH41 when compared to those exposed to Ec472/01. Altogether, these results show that EH41 expresses virulence genes, inducing a distinctive host cell response, and is likely associated with severe pathogenicity.

6.
Microorganisms, v. 7, n. 9, p. 276, aug. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2822

ABSTRACT

Shiga toxin (Stx)–producing Escherichia coli (STEC) and its subgroup enterohemorrhagic E. coli are important pathogens involved in diarrhea, which may be complicated by hemorrhagic colitis and hemolytic uremic syndrome, the leading cause of acute renal failure in children. Early diagnosis is essential for clinical management, as an antibiotic treatment in STEC infections is not recommended. Previously obtained antibodies against Stx1 and Stx2 toxins were employed to evaluate the sensitivity and specificity of the latex Agglutination test (LAT), lateral flow assay (LFA), and capture ELISA (cEIA) for STEC detection. The LAT (mAb Stx1 plus mAb stx2) showed 99% sensitivity and 97% specificity. Individually, Stx1 antibodies showed 95.5% and 94% sensitivity and a specificity of 97% and 99% in the cEIA and LFA assay, respectively. Stx2 antibodies showed a sensitivity of 92% in both assays and a specificity of 100% and 98% in the cEIA and LFA assay, respectively. These results allow us to conclude that we have robust tools for the diagnosis of STEC infections.

7.
Microorganisms, v. 7, n. 195, jul. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2813

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) O113:H21 strains are associated with human diarrhea and some strains may cause hemolytic–uremic syndrome (HUS). In Brazil, these strains are commonly found in cattle but, so far, were not isolated from HUS patients. Here, a system biology approach was used to investigate the differential transcriptomic and phenotypic responses of enterocyte-like Caco-2 cells to two STEC O113:H21 strains with similar virulence factor profiles (i.e., expressing stx2, ehxA, epeA, espA, iha, saa, sab, and subA): EH41 (Caco-2/EH41), isolated from a HUS patient in Australia, and Ec472/01 (Caco-2/Ec472), isolated from bovine feces in Brazil, during a 3 h period of bacteria–enterocyte interaction. Gene co-expression network analysis for Caco-2/EH41 revealed a quite abrupt pattern of topological variation along 3 h of enterocyte–bacteria interaction when compared with networks obtained for Caco-2/Ec472. Transcriptional module characterization revealed that EH41 induces inflammatory and apoptotic responses in Caco-2 cells just after the first hour of enterocyte–bacteria interaction, whereas the response to Ec472/01 is associated with cytoskeleton organization at the first hour, followed by the expression of immune response modulators. Scanning electron microscopy showed more intense microvilli destruction in Caco-2 cells exposed to EH41 when compared to those exposed to Ec472/01. Altogether, these results show that EH41 expresses virulence genes, inducing a distinctive host cell response, and is likely associated with severe pathogenicity.

8.
Microorganisms ; 7(9): 276, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17164

ABSTRACT

Shiga toxin (Stx)–producing Escherichia coli (STEC) and its subgroup enterohemorrhagic E. coli are important pathogens involved in diarrhea, which may be complicated by hemorrhagic colitis and hemolytic uremic syndrome, the leading cause of acute renal failure in children. Early diagnosis is essential for clinical management, as an antibiotic treatment in STEC infections is not recommended. Previously obtained antibodies against Stx1 and Stx2 toxins were employed to evaluate the sensitivity and specificity of the latex Agglutination test (LAT), lateral flow assay (LFA), and capture ELISA (cEIA) for STEC detection. The LAT (mAb Stx1 plus mAb stx2) showed 99% sensitivity and 97% specificity. Individually, Stx1 antibodies showed 95.5% and 94% sensitivity and a specificity of 97% and 99% in the cEIA and LFA assay, respectively. Stx2 antibodies showed a sensitivity of 92% in both assays and a specificity of 100% and 98% in the cEIA and LFA assay, respectively. These results allow us to conclude that we have robust tools for the diagnosis of STEC infections.

9.
Microorganisms ; 7(195)2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17142

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) O113:H21 strains are associated with human diarrhea and some strains may cause hemolytic–uremic syndrome (HUS). In Brazil, these strains are commonly found in cattle but, so far, were not isolated from HUS patients. Here, a system biology approach was used to investigate the differential transcriptomic and phenotypic responses of enterocyte-like Caco-2 cells to two STEC O113:H21 strains with similar virulence factor profiles (i.e., expressing stx2, ehxA, epeA, espA, iha, saa, sab, and subA): EH41 (Caco-2/EH41), isolated from a HUS patient in Australia, and Ec472/01 (Caco-2/Ec472), isolated from bovine feces in Brazil, during a 3 h period of bacteria–enterocyte interaction. Gene co-expression network analysis for Caco-2/EH41 revealed a quite abrupt pattern of topological variation along 3 h of enterocyte–bacteria interaction when compared with networks obtained for Caco-2/Ec472. Transcriptional module characterization revealed that EH41 induces inflammatory and apoptotic responses in Caco-2 cells just after the first hour of enterocyte–bacteria interaction, whereas the response to Ec472/01 is associated with cytoskeleton organization at the first hour, followed by the expression of immune response modulators. Scanning electron microscopy showed more intense microvilli destruction in Caco-2 cells exposed to EH41 when compared to those exposed to Ec472/01. Altogether, these results show that EH41 expresses virulence genes, inducing a distinctive host cell response, and is likely associated with severe pathogenicity.

10.
Vet Microbiol ; 196: 72-77, 2016 Nov 30.
Article in English | MEDLINE | ID: mdl-27939159

ABSTRACT

Food-producing animals can harbor Escherichia coli strains with potential to cause diseases in humans. In this study, the presence of enteropathogenic E. coli (EPEC) was investigated in fecal samples from 130 healthy sheep (92 lambs and 38 adults) raised for meat in southern Brazil. EPEC was detected in 19.2% of the sheep examined, but only lambs were found to be positive. A total of 25 isolates was characterized and designated atypical EPEC (aEPEC) as tested negative for bfpA gene and BFP production. The presence of virulence markers linked to human disease as ehxA, paa, and lpfAO113 was observed in 60%, 24%, and 88% of the isolates, respectively. Of the 11 serotypes identified, eight were described among human pathogenic strains, while three (O1:H8, O11:H21 and O125:H19) were not previously detected in aEPEC. Associations between intimin subtypes and phylogroups were observed, including eae-θ2/A, eae-ß1/B1, eae-α2/B2 and eae-γ1/D. Although PFGE typing of 16 aEPEC isolates resulted in 14 unique pulsetypes suggesting a genetic diversity, specific clones were found to be distributed in some flocks. In conclusion, potentially pathogenic aEPEC strains are present in sheep raised for meat, particularly in lambs, which can better contribute to dissemination of these bacteria than adult animals.


Subject(s)
Disease Reservoirs/microbiology , Enteropathogenic Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Food Contamination , Meat/microbiology , Animals , Brazil/epidemiology , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli Infections/epidemiology , Feces/microbiology , Genetic Variation , Humans , Sheep , Virulence/genetics
11.
Braz. j. microbiol ; 47(supl.1): 3-30, Oct.-Dec. 2016.
Article in English | LILACS | ID: biblio-839325

ABSTRACT

ABSTRACT Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.


Subject(s)
Humans , Diarrhea/diagnosis , Diarrhea/microbiology , Escherichia coli/classification , Escherichia coli/physiology , Escherichia coli Infections/diagnosis , Escherichia coli Infections/microbiology , Prevalence , Virulence Factors/genetics , Diarrhea/epidemiology , Escherichia coli/pathogenicity , Escherichia coli Infections/epidemiology
12.
Braz. j. microbiol ; 47(supl.1): 03-30, Oct.-Dec. 2016.
Article in English | LILACS, VETINDEX | ID: biblio-1469632

ABSTRACT

Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.


Subject(s)
Diarrhea/diagnosis , Diarrhea/epidemiology , Escherichia coli/pathogenicity , Escherichia coli Infections/epidemiology
13.
Braz J Microbiol ; 47 Suppl 1: 3-30, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27866935

ABSTRACT

Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.


Subject(s)
Diarrhea/diagnosis , Diarrhea/microbiology , Escherichia coli Infections/diagnosis , Escherichia coli Infections/microbiology , Escherichia coli/classification , Escherichia coli/physiology , Diarrhea/epidemiology , Escherichia coli/pathogenicity , Escherichia coli Infections/epidemiology , Humans , Prevalence , Virulence Factors/genetics
14.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469620

ABSTRACT

ABSTRACT Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.

15.
Braz J Microbiol ; 46(1): 167-71, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26221104

ABSTRACT

Aggregative adherence to human epithelial cells, most to renal proximal tubular (HK-2) cells, and biofilm formation was identified among antimicrobial resistant Escherichia coli strains mainly isolated from bacteremia. The importance of these virulence properties contributing to host colonization and infection associated with multiresistant E. coli should not be neglected.


Subject(s)
Bacterial Adhesion , Biofilms/growth & development , Drug Resistance, Bacterial , Escherichia coli/genetics , Escherichia coli/physiology , Genotype , Bacteremia/microbiology , Cell Line , Epithelial Cells/microbiology , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Humans
16.
Braz. j. microbiol ; 46(1): 167-171, 05/2015. tab, graf
Article in English | LILACS | ID: lil-748248

ABSTRACT

Aggregative adherence to human epithelial cells, most to renal proximal tubular (HK-2) cells, and biofilm formation was identified among antimicrobial resistant Escherichia coli strains mainly isolated from bacteremia. The importance of these virulence properties contributing to host colonization and infection associated with multiresistant E. coli should not be neglected.


Subject(s)
Humans , Bacterial Adhesion , Biofilms/growth & development , Drug Resistance, Bacterial , Escherichia coli/genetics , Escherichia coli/physiology , Genotype , Bacteremia/microbiology , Cell Line , Epithelial Cells/microbiology , Escherichia coli Infections/microbiology , Escherichia coli/isolation & purification
17.
Appl Environ Microbiol ; 80(15): 4757-63, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24858089

ABSTRACT

Shiga toxin-producing Escherichia coli strains of serotype O113:H21 have caused severe human diseases, but they are unusual in that they do not produce adherence factors coded by the locus of enterocyte effacement. Here, a PCR microarray was used to characterize 65 O113:H21 strains isolated from the environment, food, and clinical infections from various countries. In comparison to the pathogenic strains that were implicated in hemolytic-uremic syndrome in Australia, there were no clear differences between the pathogens and the environmental strains with respect to the 41 genetic markers tested. Furthermore, all of the strains carried only Shiga toxin subtypes associated with human infections, suggesting that the environmental strains have the potential to cause disease. Most of the O113:H21 strains were closely related and belonged in the same clonal group (ST-223), but CRISPR analysis showed a great degree of genetic diversity among the O113:H21 strains.


Subject(s)
Environmental Microbiology , Escherichia coli Infections/microbiology , Genetic Variation , Meat/microbiology , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification , Animals , Cattle , Dogs , Escherichia coli Proteins/genetics , Feces/microbiology , Food Microbiology , Goats , Humans , Molecular Sequence Data , Phylogeny , Shiga Toxin/metabolism , Shiga-Toxigenic Escherichia coli/classification , Shiga-Toxigenic Escherichia coli/metabolism , Virulence Factors/genetics
19.
Toxins (Basel) ; 5(12): 2384-402, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24316604

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) produce heat-labile (LT) and/or heat-stable enterotoxins (ST). Despite that, the mechanism of action of both toxins are well known, there is great controversy in the literature concerning the in vitro production and release of LT and, for ST, no major concerns have been discussed. Furthermore, the majority of published papers describe the use of only one or a few ETEC isolates to define the production and release of these toxins, which hinders the detection of ETEC by phenotypic approaches. Thus, the present study was undertaken to obtain a better understanding of ST and LT toxin production and release under laboratory conditions. Accordingly, a collection of 90 LT-, ST-, and ST/LT-producing ETEC isolates was used to determine a protocol for toxin production and release aimed at ETEC detection. For this, we used previously raised anti-LT antibodies and the anti-ST monoclonal and polyclonal antibodies described herein. The presence of bile salts and the use of certain antibiotics improved ETEC toxin production/release. Triton X-100, as chemical treatment, proved to be an alternative method for toxin release. Consequently, a common protocol that can increase the production and release of LT and ST toxins could facilitate and enhance the sensitivity of diagnostic tests for ETEC using the raised and described antibodies in the present work.


Subject(s)
Bacterial Toxins/metabolism , Biological Assay/methods , Enterotoxigenic Escherichia coli/metabolism , Enterotoxins/metabolism , Escherichia coli Proteins/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Toxins/immunology , Bile Acids and Salts/pharmacology , Ciprofloxacin/pharmacology , Enterotoxigenic Escherichia coli/drug effects , Enterotoxigenic Escherichia coli/isolation & purification , Enterotoxins/immunology , Enzyme-Linked Immunosorbent Assay , Escherichia coli Proteins/immunology , Female , Immunoglobulin G/immunology , Lincomycin/pharmacology , Male , Mice, Inbred BALB C , Rabbits
20.
Appl Environ Microbiol ; 79(22): 6847-54, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23974139

ABSTRACT

Escherichia coli strains of serogroup O26 comprise two distinct groups of pathogens, characterized as enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC). Among the several genes related to type III secretion system-secreted effector proteins, espK was found to be highly specific for EHEC O26:H11 and its stx-negative derivative strains isolated in European countries. E. coli O26 strains isolated in Brazil from infant diarrhea, foods, and the environment have consistently been shown to lack stx genes and are thus considered atypical EPEC. However, no further information related to their genetic background is known. Therefore, in this study, we aimed to discriminate and characterize these Brazilian O26 stx-negative strains by phenotypic, genetic, and biochemical approaches. Among 44 isolates confirmed to be O26 isolates, most displayed flagellar antigen H11 or H32. Out of the 13 nonmotile isolates, 2 tested positive for fliCH11, and 11 were fliCH8 positive. The identification of genetic markers showed that several O26:H11 and all O26:H8 strains tested positive for espK and could therefore be discriminated as EHEC derivatives. The presence of H8 among EHEC O26 and its stx-negative derivative isolates is described for the first time. The interaction of three isolates with polarized Caco-2 cells and with intestinal biopsy specimen fragments ex vivo confirmed the ability of the O26 strains analyzed to cause attaching-and-effacing (A/E) lesions. The O26:H32 strains, isolated mostly from meat, were considered nonvirulent. Knowledge of the virulence content of stx-negative O26 isolates within the same serotype helped to avoid misclassification of isolates, which certainly has important implications for public health surveillance.


Subject(s)
Enterohemorrhagic Escherichia coli/isolation & purification , Enteropathogenic Escherichia coli/isolation & purification , Phenotype , Adhesins, Bacterial/genetics , Bacterial Adhesion/genetics , Brazil , Caco-2 Cells , Enterohemorrhagic Escherichia coli/classification , Enterohemorrhagic Escherichia coli/genetics , Enteropathogenic Escherichia coli/classification , Enteropathogenic Escherichia coli/genetics , Escherichia coli Proteins/genetics , Genetic Markers , HeLa Cells , Hemolysin Proteins/genetics , Humans , Phylogeny , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Sequence Analysis, DNA , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...