Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(14)2022 Jul 17.
Article in English | MEDLINE | ID: mdl-35887219

ABSTRACT

Acute kidney injury (AKI) is a common complication of severe human diseases, resulting in increased morbidity and mortality as well as unfavorable long-term outcomes. Although the mammalian kidney is endowed with an amazing capacity to recover from AKI, little progress has been made in recent decades to facilitate recovery from AKI. To elucidate the early repair mechanisms after AKI, we employed the zebrafish pronephros injury model. Since damaged cells release large amounts of ATP and ATP-degradation products to signal apoptosis or necrosis to neighboring cells, we examined how depletion of purinergic and adenosine receptors impacts the directed cell migration that ensues immediately after a laser-induced tubular injury. We found that depletion of the zebrafish adenosine receptors adora1a, adora1b, adora2aa, and adora2ab significantly affected the repair process. Similar results were obtained after depletion of the purinergic p2ry2 receptor, which is highly expressed during zebrafish pronephros development. Released ATP is finally metabolized to inosine by adenosine deaminase. Depletion of zebrafish adenosine deaminases ada and ada2b interfered with the repair process; furthermore, combinations of ada and ada2b, or ada2a and ada2b displayed synergistic effects at low concentrations, supporting the involvement of inosine signaling in the repair process after a tubular injury. Our findings suggest that nucleotide-dependent signaling controls immediate migratory responses after tubular injury.


Subject(s)
Acute Kidney Injury , Zebrafish , Acute Kidney Injury/metabolism , Adenosine Triphosphate/metabolism , Animals , Cell Movement , Humans , Inosine , Mammals/metabolism , Nucleotides , Receptors, Purinergic P1/metabolism , Receptors, Purinergic P2Y2 , Zebrafish/metabolism
2.
Dev Biol ; 481: 160-171, 2022 01.
Article in English | MEDLINE | ID: mdl-34666023

ABSTRACT

The corpuscles of Stannius (CS) represent a unique endocrine organ of teleostean fish that secrets stanniocalcin-1 (Stc1) to maintain calcium homeostasis. Appearing at 20-25 somite stage in the distal zebrafish pronephros, stc1-expressing cells undergo apical constriction, and are subsequently extruded to form a distinct gland on top of the distal pronephric tubules at 50 â€‹h post fertilization (hpf). Several transcription factors (e.g. Hnf1b, Irx3b, Tbx2a/b) and signaling pathways (e.g. Notch) control CS development. We report now that Fgf signaling is required to commit tubular epithelial cells to differentiate into stc1-expressing CS cells. Inhibition of Fgf signaling by SU5402, dominant-negative Fgfr1, or depletion of fgf8a prevented CS formation and stc1 expression. Ablation experiments revealed that CS have the ability to partially regenerate via active cell migration involving extensive filopodia and lamellipodia formation. Activation of Wnt signaling curtailed stc1 expression, but had no effect on CS formation. Thus, our observations identify Fgf signaling as a crucial component of CS cell fate commitment.


Subject(s)
Cell Differentiation , Endocrine Glands/embryology , Fibroblast Growth Factors , Pronephros/embryology , Wnt Signaling Pathway , Zebrafish Proteins , Zebrafish , Animals , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...