Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 16: 958703, 2022.
Article in English | MEDLINE | ID: mdl-35992943

ABSTRACT

Directional deep brain stimulation (DBS) contacts provide greater spatial flexibility for therapy than traditional ring-shaped electrodes, but little is known about longitudinal changes of impedance and orientation. We measured monopolar and bipolar impedance of DBS contacts in 31 patients who underwent unilateral subthalamic nucleus deep brain stimulation as part of a randomized study (SUNDIAL, NCT03353688). At different follow-up visits, patients were assigned new stimulation configurations and impedance was measured. Additionally, we measured the orientation of the directional lead during surgery, immediately after surgery, and 1 year later. Here we contrast impedances in directional versus ring contacts with respect to local anatomy, active stimulation contact(s), and over time. Directional contacts display larger impedances than ring contacts. Impedances generally increase slightly over the first year of therapy, save for a transient decrease immediately post-surgery under general anesthesia during pulse generator placement. Local impedances decrease at active stimulation sites, and contacts in closest proximity to internal capsule display higher impedances than other anatomic sites. DBS leads rotate slightly in the immediate postoperative period (typically less than the angle of a single contact) but otherwise remain stable over the following year. These data provide useful information for setting clinical stimulation parameters over time.

2.
Mov Disord ; 37(8): 1683-1692, 2022 08.
Article in English | MEDLINE | ID: mdl-35702056

ABSTRACT

BACKGROUND: Dystonia is an understudied motor feature of Parkinson's disease (PD). Although considerable efforts have focused on brain oscillations related to the cardinal symptoms of PD, whether dystonia is associated with specific electrophysiological features is unclear. OBJECTIVE: The objective of this study was to investigate subcortical and cortical field potentials at rest and during contralateral hand and foot movements in patients with PD with and without dystonia. METHODS: We examined the prevalence and distribution of dystonia in patients with PD undergoing deep brain stimulation surgery.  During surgery, we recorded intracranial electrophysiology from the motor cortex and directional electrodes in the subthalamic nucleus (STN) both at rest and during self-paced repetitive contralateral hand and foot movements. Wavelet transforms and mixed models characterized changes in spectral content in patients with and without dystonia. RESULTS: Dystonia was highly prevalent at enrollment (61%) and occurred most commonly in the foot. Regardless of dystonia status, cortical recordings display beta (13-30 Hz) desynchronization during movements versus rest, while STN signals show increased power in low frequencies (6.0 ± 3.3 and 4.2 ± 2.9 Hz peak frequencies for hand and foot movements, respectively). Patients with PD with dystonia during deep brain stimulation surgery displayed greater M1 beta power at rest and STN low-frequency power during movements versus those without dystonia. CONCLUSIONS: Spectral power in motor cortex and STN field potentials differs markedly during repetitive limb movements, with cortical beta desynchronization and subcortical low-frequency synchronization, especially in patients with PD with dystonia. Greater knowledge on field potential dynamics in human motor circuits can inform dystonia pathophysiology in PD and guide novel approaches to therapy. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Deep Brain Stimulation , Dystonia , Dystonic Disorders , Parkinson Disease , Subthalamic Nucleus , Dystonia/etiology , Humans , Subthalamic Nucleus/physiology
3.
Mov Disord ; 27(11): 1404-12, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22926754

ABSTRACT

Deep brain stimulation (DBS) relieves disabling symptoms of neurologic and psychiatric diseases when medical treatments fail, yet its therapeutic mechanism is unknown. We hypothesized that ventral intermediate (VIM) nucleus stimulation for essential tremor activates the cortex at short latencies, and that this potential is related to the suppression of tremor in the contralateral arm. We measured cortical activity with electroencephalography in 5 subjects (seven brain hemispheres) across a range of stimulator settings, and reversal of the anode and cathode electrode contacts minimized the stimulus artifact, allowing visualization of brain activity. Regression quantified the relationship between stimulation parameters and both the peak of the short latency potential and tremor suppression. Stimulation generated a polyphasic event-related potential in the ipsilateral sensorimotor cortex, with peaks at discrete latencies beginning less than 1 ms after stimulus onset (mean latencies 0.9 ± 0.2, 5.6 ± 0.7, and 13.9 ± 1.4 ms, denoted R1, R2, and R3, respectively). R1 showed more fixed timing than the subsequent peaks in the response (P < 0.0001, Levene's test), and R1 amplitude and frequency were both closely associated with tremor suppression (P < 0.0001, respectively). These findings demonstrate that effective VIM thalamic stimulation for essential tremor activates the cerebral cortex at approximately 1 ms after the stimulus pulse. The association between this short latency potential and tremor suppression suggests that DBS may improve tremor by synchronizing the precise timing of discharges in nearby axons and, by extension, the distributed motor network to the stimulation frequency or one of its subharmonics.


Subject(s)
Cerebral Cortex/physiopathology , Deep Brain Stimulation/methods , Evoked Potentials/physiology , Reaction Time/physiology , Thalamus/physiology , Tremor/therapy , Aged , Biophysics , Brain Mapping , Electroencephalography , Female , Humans , Male , Middle Aged , Time Factors , Tremor/pathology
4.
Mov Disord ; 27(7): 864-73, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22648508

ABSTRACT

Subthalamic deep brain stimulation (DBS) is superior to medical therapy for the motor symptoms of advanced Parkinson's disease (PD), and additional evidence suggests that it improves refractory symptoms of essential tremor, primary generalized dystonia, and obsessive-compulsive disorder. Despite this, its therapeutic mechanism is unknown. We hypothesized that subthalamic stimulation activates the cerebral cortex at short latencies after stimulus onset during clinically effective stimulation for PD. In 5 subjects (six hemispheres), EEG measured the response of cortex to subthalamic stimulation across a range of stimulation voltages and frequencies. Novel analytical techniques reversed the anode and cathode electrode contacts and summed the resulting pair of event-related potentials to suppress the stimulation artifact. We found that subthalamic brain stimulation at 20 Hz activates the somatosensory cortex at discrete latencies (mean latencies: 1.0 ± 0.4, 5.7 ± 1.1, and 22.2 ± 1.8 ms, denoted as R1, R2, and R3, respectively). The amplitude of the short latency peak (R1) during clinically effective high-frequency stimulation is nonlinearly dependent on stimulation voltage (P < 0.001; repeated-measures analysis of variance), and its latency is less variable than that of R3 (1.02 versus 19.46 ms; P < 0.001, Levene's test). We conclude that clinically effective subthalamic brain stimulation in humans with PD activates the cerebral cortex at 1 ms after stimulus onset, most likely by antidromic activation. These findings suggest that alteration of the precise timing of action potentials in cortical neurons with axonal projections to the subthalamic region may be an important component of the therapeutic mechanism of subthalamic brain stimulation.


Subject(s)
Cerebral Cortex/physiopathology , Deep Brain Stimulation/methods , Parkinson Disease/pathology , Parkinson Disease/therapy , Reaction Time/physiology , Subthalamus/physiology , Aged , Analysis of Variance , Electroencephalography , Evoked Potentials/physiology , Female , Humans , Male , Middle Aged , Motor Activity/physiology , Nonlinear Dynamics , Regression Analysis
5.
J Radiosurg SBRT ; 1(2): 117-122, 2011.
Article in English | MEDLINE | ID: mdl-29296305

ABSTRACT

Linear accelerator (linac) based CNS stereotactic radiosurgery (SRS) requires significant time resources. We hypothesized that CNS SRS using a flattening filter free (FFF) linac would reduce treatment time and improve clinical efficiency. A FFF linac was recently commissioned for CNS radiosurgery at the University of Alabama at Birmingham. The efficiency of this linac for CNS SRS was retrospectively reviewed. Beam on time (BOT), time in room (TIR), and clinical dose rate (CDR) were calculated using an integrated treatment planning, record, and verification software platform and are proposed as surrogates for treatment efficiency. Twenty-seven eligible CNS SRS cases consisting of 1-5 fractions of 5 Gy or more per fraction were reviewed. Mean BOT was 1:21 (minutes:seconds; range: 00:36-2:52) and mean TIR was 10:42 (minutes:seconds; range: 6:05-22:56). The mean CDR was 1820 MU/ min (range: 872-2396). On regression analysis the number of alignment images, treatment arcs, targets, monitor units, and presence of intra-fraction imaging were factors significantly (p < 0.05) associated with prolonged TIR. Use of FFF mode in CNS SRS more than triples the CDR and results in shortened BOT and TIR compared to treatment at conventional dose rates. Reduction in clinical treatment times may translate to better target localization due to reduced opportunity for intrafraction motion. Linac-based CNS SRS can be completed in a normal time slot with a high output FFF linac.

6.
J Clin Oncol ; 24(22): 3644-50, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16877732

ABSTRACT

PURPOSE: TM-601 binds to malignant brain tumor cells with high affinity and does not seem to bind to normal brain tissue. Preclinical studies suggest that iodine-131 (131I) -TM-601 may be an effective targeted therapy for the treatment of glioma. We evaluated the safety, biodistribution, and dosimetry of intracavitary-administered 131I-TM-601 in patients with recurrent glioma. PATIENTS AND METHODS: Eighteen adult patients (17 with glioblastoma multiforme and one with anaplastic astrocytoma) with histologically documented recurrent glioma and a Karnofsky performance status of > or = 60% who were eligible for cytoreductive craniotomy were enrolled. An intracavitary catheter with subcutaneous reservoir was placed in the tumor cavity during surgery. Two weeks after surgery, patients received a single dose of 131I-TM-601 from one of three dosing panels (0.25, 0.50, or 1.0 mg of TM-601), each labeled with 10 mCi of 131I. RESULTS: Intracavitary administration was well tolerated, with no dose-limiting toxicities observed. 131I-TM-601 bound to the tumor periphery and demonstrated long-term retention at the tumor with minimal uptake in any other organ system. Nonbound peptide was eliminated from the body within 24 to 48 hours. Only minor adverse events were reported during the 22 days after administration. At day 180, four patients had radiographic stable disease, and one had a partial response. Two of these patients further improved and were without evidence of disease for more than 30 months. CONCLUSION: A single dose of 10 mCi 131I-TM-601 was well tolerated for 0.25 to 1.0 mg TM-601 and may have an antitumoral effect. Dosimetry and biodistribution from this first trial suggest that phase II studies of 131I-TM-601 are indicated.


Subject(s)
Brachytherapy , Brain Neoplasms/radiotherapy , Glioma/diagnostic imaging , Iodine Radioisotopes/administration & dosage , Iodine Radioisotopes/adverse effects , Scorpion Venoms/administration & dosage , Scorpion Venoms/adverse effects , Adult , Aged , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Female , Glioma/pathology , Glioma/radiotherapy , Humans , Karnofsky Performance Status , Magnetic Resonance Imaging , Male , Middle Aged , Neoplasm Recurrence, Local/radiotherapy , Radiography , Radiometry , Radiopharmaceuticals/administration & dosage , Radiopharmaceuticals/adverse effects , Radiotherapy Dosage , Survival Analysis , Time Factors , Tomography, Emission-Computed, Single-Photon , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...