Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(4): 4871-4881, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35049282

ABSTRACT

Ag2S nanoparticles are the staple for high-resolution preclinical imaging and sensing owing to their photochemical stability, low toxicity, and photoluminescence (PL) in the second near-infrared biological window. Unfortunately, Ag2S nanoparticles exhibit a low PL efficiency attributed to their defective surface chemistry, which curbs their translation into the clinics. To address this shortcoming, we present a simple methodology that allows to improve the PL quantum yield from 2 to 10%, which is accompanied by a PL lifetime lengthening from 0.7 to 3.8 µs. Elemental mapping and X-ray photoelectron spectroscopy indicate that the PL enhancement is related to the partial removal of sulfur atoms from the nanoparticle's surface, reducing surface traps responsible for nonradiative de-excitation processes. This interpretation is further backed by theoretical modeling. The acquired knowledge about the nanoparticles' surface chemistry is used to optimize the procedure to transfer the nanoparticles into aqueous media, obtaining water-dispersible Ag2S nanoparticles that maintain excellent PL properties. Finally, we compare the performance of these nanoparticles with other near-infrared luminescent probes in a set of in vitro and in vivo experiments, which demonstrates not only their cytocompatibility but also their superb optical properties when they are used in vivo, affording higher resolution images.


Subject(s)
Biocompatible Materials/chemistry , Nanoparticles/chemistry , Optical Imaging , Silver/chemistry , Sulfur/chemistry , Infrared Rays , Materials Testing , Particle Size , Surface Properties
2.
Nanoscale ; 11(43): 21009, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31651016

ABSTRACT

Correction for 'Perspectives for Ag2S NIR-II nanoparticles in biomedicine: from imaging to multifunctionality' by Yingli Shen, et al., Nanoscale, 2019, DOI: 10.1039/c9nr05733a.

SELECTION OF CITATIONS
SEARCH DETAIL
...