Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Circ Res ; 134(8): e52-e71, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38497220

ABSTRACT

BACKGROUND: Andersen-Tawil syndrome type 1 is a rare heritable disease caused by mutations in the gene coding the strong inwardly rectifying K+ channel Kir2.1. The extracellular Cys (cysteine)122-to-Cys154 disulfide bond in the channel structure is crucial for proper folding but has not been associated with correct channel function at the membrane. We evaluated whether a human mutation at the Cys122-to-Cys154 disulfide bridge leads to Kir2.1 channel dysfunction and arrhythmias by reorganizing the overall Kir2.1 channel structure and destabilizing its open state. METHODS: We identified a Kir2.1 loss-of-function mutation (c.366 A>T; p.Cys122Tyr) in an ATS1 family. To investigate its pathophysiological implications, we generated an AAV9-mediated cardiac-specific mouse model expressing the Kir2.1C122Y variant. We employed a multidisciplinary approach, integrating patch clamping and intracardiac stimulation, molecular biology techniques, molecular dynamics, and bioluminescence resonance energy transfer experiments. RESULTS: Kir2.1C122Y mice recapitulated the ECG features of ATS1 independently of sex, including corrected QT prolongation, conduction defects, and increased arrhythmia susceptibility. Isolated Kir2.1C122Y cardiomyocytes showed significantly reduced inwardly rectifier K+ (IK1) and inward Na+ (INa) current densities independently of normal trafficking. Molecular dynamics predicted that the C122Y mutation provoked a conformational change over the 2000-ns simulation, characterized by a greater loss of hydrogen bonds between Kir2.1 and phosphatidylinositol 4,5-bisphosphate than wild type (WT). Therefore, the phosphatidylinositol 4,5-bisphosphate-binding pocket was destabilized, resulting in a lower conductance state compared with WT. Accordingly, on inside-out patch clamping, the C122Y mutation significantly blunted Kir2.1 sensitivity to increasing phosphatidylinositol 4,5-bisphosphate concentrations. In addition, the Kir2.1C122Y mutation resulted in channelosome degradation, demonstrating temporal instability of both Kir2.1 and NaV1.5 proteins. CONCLUSIONS: The extracellular Cys122-to-Cys154 disulfide bond in the tridimensional Kir2.1 channel structure is essential for the channel function. We demonstrate that breaking disulfide bonds in the extracellular domain disrupts phosphatidylinositol 4,5-bisphosphate-dependent regulation, leading to channel dysfunction and defects in Kir2.1 energetic stability. The mutation also alters functional expression of the NaV1.5 channel and ultimately leads to conduction disturbances and life-threatening arrhythmia characteristic of Andersen-Tawil syndrome type 1.


Subject(s)
Andersen Syndrome , Humans , Mice , Animals , Andersen Syndrome/genetics , Andersen Syndrome/metabolism , Mutation , Myocytes, Cardiac/metabolism , Cardiac Conduction System Disease , Disulfides , Phosphatidylinositols/metabolism
2.
Cardiovasc Res ; 120(5): 490-505, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38261726

ABSTRACT

AIMS: Short QT syndrome type 3 (SQTS3) is a rare arrhythmogenic disease caused by gain-of-function mutations in KCNJ2, the gene coding the inward rectifier potassium channel Kir2.1. We used a multidisciplinary approach and investigated arrhythmogenic mechanisms in an in-vivo model of de-novo mutation Kir2.1E299V identified in a patient presenting an extremely abbreviated QT interval and paroxysmal atrial fibrillation. METHODS AND RESULTS: We used intravenous adeno-associated virus-mediated gene transfer to generate mouse models, and confirmed cardiac-specific expression of Kir2.1WT or Kir2.1E299V. On ECG, the Kir2.1E299V mouse recapitulated the QT interval shortening and the atrial-specific arrhythmia of the patient. The PR interval was also significantly shorter in Kir2.1E299V mice. Patch-clamping showed extremely abbreviated action potentials in both atrial and ventricular Kir2.1E299V cardiomyocytes due to a lack of inward-going rectification and increased IK1 at voltages positive to -80 mV. Relative to Kir2.1WT, atrial Kir2.1E299V cardiomyocytes had a significantly reduced slope conductance at voltages negative to -80 mV. After confirming a higher proportion of heterotetrameric Kir2.x channels containing Kir2.2 subunits in the atria, in-silico 3D simulations predicted an atrial-specific impairment of polyamine block and reduced pore diameter in the Kir2.1E299V-Kir2.2WT channel. In ventricular cardiomyocytes, the mutation increased excitability by shifting INa activation and inactivation in the hyperpolarizing direction, which protected the ventricle against arrhythmia. Moreover, Purkinje myocytes from Kir2.1E299V mice manifested substantially higher INa density than Kir2.1WT, explaining the abbreviation in the PR interval. CONCLUSION: The first in-vivo mouse model of cardiac-specific SQTS3 recapitulates the electrophysiological phenotype of a patient with the Kir2.1E299V mutation. Kir2.1E299V eliminates rectification in both cardiac chambers but protects against ventricular arrhythmias by increasing excitability in both Purkinje-fiber network and ventricles. Consequently, the predominant arrhythmias are supraventricular likely due to the lack of inward rectification and atrial-specific reduced pore diameter of the Kir2.1E299V-Kir2.2WT heterotetramer.


Subject(s)
Atrial Fibrillation , Disease Models, Animal , Myocytes, Cardiac , Potassium Channels, Inwardly Rectifying , Animals , Humans , Mice , Action Potentials , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/metabolism , Atrial Fibrillation/genetics , Atrial Fibrillation/physiopathology , Atrial Fibrillation/metabolism , Genetic Predisposition to Disease , Heart Rate/genetics , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phenotype , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism
3.
Heart Rhythm ; 21(5): 630-646, 2024 May.
Article in English | MEDLINE | ID: mdl-38244712

ABSTRACT

Sudden cardiac death in children and young adults is a relatively rare but tragic event whose pathophysiology is unknown at the molecular level. Evidence indicates that the main cardiac sodium channel (NaV1.5) and the strong inward rectifier potassium channel (Kir2.1) physically interact and form macromolecular complexes (channelosomes) with common partners, including adapter, scaffolding, and regulatory proteins that help them traffic together to their eventual membrane microdomains. Most important, dysfunction of either or both ion channels has direct links to hereditary human diseases. For example, certain mutations in the KCNJ2 gene encoding the Kir2.1 protein result in Andersen-Tawil syndrome type 1 and alter both inward rectifier potassium and sodium inward currents. Similarly, trafficking-deficient mutations in the gene encoding the NaV1.5 protein (SCN5A) result in Brugada syndrome and may also disturb both inward rectifier potassium and sodium inward currents. Moreover, gain-of-function mutations in KCNJ2 result in short QT syndrome type 3, which is extremely rare but highly arrhythmogenic, and can modify Kir2.1-NaV1.5 interactions in a mutation-specific way, further highlighting the relevance of channelosomes in ion channel diseases. By expressing mutant proteins that interrupt or modify Kir2.1 or NaV1.5 function in animal models and patient-specific pluripotent stem cell-derived cardiomyocytes, investigators are defining for the first time the mechanistic framework of how mutation-induced dysregulation of the Kir2.1-NaV1.5 channelosome affects cardiac excitability, resulting in arrhythmias and sudden death in different cardiac diseases.


Subject(s)
Arrhythmias, Cardiac , NAV1.5 Voltage-Gated Sodium Channel , Potassium Channels, Inwardly Rectifying , Humans , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Mutation , Animals
4.
bioRxiv ; 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37333254

ABSTRACT

Background: Andersen-Tawil Syndrome Type 1 (ATS1) is a rare heritable disease caused by mutations in the strong inwardly rectifying K+ channel Kir2.1. The extracellular Cys122-to-Cys154 disulfide bond in the Kir2.1 channel structure is crucial for proper folding, but has not been associated with correct channel function at the membrane. We tested whether a human mutation at the Cys122-to-Cys154 disulfide bridge leads to Kir2.1 channel dysfunction and arrhythmias by reorganizing the overall Kir2.1 channel structure and destabilizing the open state of the channel. Methods and Results: We identified a Kir2.1 loss-of-function mutation in Cys122 (c.366 A>T; p.Cys122Tyr) in a family with ATS1. To study the consequences of this mutation on Kir2.1 function we generated a cardiac specific mouse model expressing the Kir2.1C122Y mutation. Kir2.1C122Y animals recapitulated the abnormal ECG features of ATS1, like QT prolongation, conduction defects, and increased arrhythmia susceptibility. Kir2.1C122Y mouse cardiomyocytes showed significantly reduced inward rectifier K+ (IK1) and inward Na+ (INa) current densities independently of normal trafficking ability and localization at the sarcolemma and the sarcoplasmic reticulum. Kir2.1C122Y formed heterotetramers with wildtype (WT) subunits. However, molecular dynamic modeling predicted that the Cys122-to-Cys154 disulfide-bond break induced by the C122Y mutation provoked a conformational change over the 2000 ns simulation, characterized by larger loss of the hydrogen bonds between Kir2.1 and phosphatidylinositol-4,5-bisphosphate (PIP2) than WT. Therefore, consistent with the inability of Kir2.1C122Y channels to bind directly to PIP2 in bioluminescence resonance energy transfer experiments, the PIP2 binding pocket was destabilized, resulting in a lower conductance state compared with WT. Accordingly, on inside-out patch-clamping the C122Y mutation significantly blunted Kir2.1 sensitivity to increasing PIP2 concentrations. Conclusion: The extracellular Cys122-to-Cys154 disulfide bond in the tridimensional Kir2.1 channel structure is essential to channel function. We demonstrated that ATS1 mutations that break disulfide bonds in the extracellular domain disrupt PIP2-dependent regulation, leading to channel dysfunction and life-threatening arrhythmias.

5.
Cardiovasc Res ; 119(4): 919-932, 2023 05 02.
Article in English | MEDLINE | ID: mdl-35892314

ABSTRACT

Andersen-Tawil syndrome (ATS) is a rare inheritable disease associated with loss-of-function mutations in KCNJ2, the gene coding the strong inward rectifier potassium channel Kir2.1, which forms an essential membrane protein controlling cardiac excitability. ATS is usually marked by a triad of periodic paralysis, life-threatening cardiac arrhythmias and dysmorphic features, but its expression is variable and not all patients with a phenotype linked to ATS have a known genetic alteration. The mechanisms underlying this arrhythmogenic syndrome are poorly understood. Knowing such mechanisms would be essential to distinguish ATS from other channelopathies with overlapping phenotypes and to develop individualized therapies. For example, the recently suggested role of Kir2.1 as a countercurrent to sarcoplasmic calcium reuptake might explain the arrhythmogenic mechanisms of ATS and its overlap with catecholaminergic polymorphic ventricular tachycardia. Here we summarize current knowledge on the mechanisms of arrhythmias leading to sudden cardiac death in ATS. We first provide an overview of the syndrome and its pathophysiology, from the patient's bedside to the protein and discuss the role of essential regulators and interactors that could play a role in cases of ATS. The review highlights novel ideas related to some post-translational channel interactions with partner proteins that might help define the molecular bases of the arrhythmia phenotype. We then propose a new all-embracing classification of the currently known ATS loss-of-function mutations according to their position in the Kir2.1 channel structure and their functional implications. We also discuss specific ATS pathogenic variants, their clinical manifestations, and treatment stratification. The goal is to provide a deeper mechanistic understanding of the syndrome toward the development of novel targets and personalized treatment strategies.


Subject(s)
Andersen Syndrome , Tachycardia, Ventricular , Humans , Andersen Syndrome/diagnosis , Andersen Syndrome/genetics , Andersen Syndrome/therapy , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/genetics , Mutation , Phenotype , Death, Sudden, Cardiac/etiology
6.
Elife ; 112022 06 28.
Article in English | MEDLINE | ID: mdl-35762211

ABSTRACT

Background: Patients with cardiomyopathy of Duchenne Muscular Dystrophy (DMD) are at risk of developing life-threatening arrhythmias, but the mechanisms are unknown. We aimed to determine the role of ion channels controlling cardiac excitability in the mechanisms of arrhythmias in DMD patients. Methods: To test whether dystrophin mutations lead to defective cardiac NaV1.5-Kir2.1 channelosomes and arrhythmias, we generated iPSC-CMs from two hemizygous DMD males, a heterozygous female, and two unrelated control males. We conducted studies including confocal microscopy, protein expression analysis, patch-clamping, non-viral piggy-bac gene expression, optical mapping and contractility assays. Results: Two patients had abnormal ECGs with frequent runs of ventricular tachycardia. iPSC-CMs from all DMD patients showed abnormal action potential profiles, slowed conduction velocities, and reduced sodium (INa) and inward rectifier potassium (IK1) currents. Membrane NaV1.5 and Kir2.1 protein levels were reduced in hemizygous DMD iPSC-CMs but not in heterozygous iPSC-CMs. Remarkably, transfecting just one component of the dystrophin protein complex (α1-syntrophin) in hemizygous iPSC-CMs from one patient restored channelosome function, INa and IK1 densities, and action potential profile in single cells. In addition, α1-syntrophin expression restored impulse conduction and contractility and prevented reentrant arrhythmias in hiPSC-CM monolayers. Conclusions: We provide the first demonstration that iPSC-CMs reprogrammed from skin fibroblasts of DMD patients with cardiomyopathy have a dysfunction of the NaV1.5-Kir2.1 channelosome, with consequent reduction of cardiac excitability and conduction. Altogether, iPSC-CMs from patients with DMD cardiomyopathy have a NaV1.5-Kir2.1 channelosome dysfunction, which can be rescued by the scaffolding protein α1-syntrophin to restore excitability and prevent arrhythmias. Funding: Supported by National Institutes of Health R01 HL122352 grant; 'la Caixa' Banking Foundation (HR18-00304); Fundación La Marató TV3: Ayudas a la investigación en enfermedades raras 2020 (LA MARATO-2020); Instituto de Salud Carlos III/FEDER/FSE; Horizon 2020 - Research and Innovation Framework Programme GA-965286 to JJ; the CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation), and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded by MICIN/AEI/10.13039/501100011033). American Heart Association postdoctoral fellowship 19POST34380706s to JVEN. Israel Science Foundation to OB and MA [824/19]. Rappaport grant [01012020RI]; and Niedersachsen Foundation [ZN3452] to OB; US-Israel Binational Science Foundation (BSF) to OB and TH [2019039]; Dr. Bernard Lublin Donation to OB; and The Duchenne Parent Project Netherlands (DPPNL 2029771) to OB. National Institutes of Health R01 AR068428 to DM and US-Israel Binational Science Foundation Grant [2013032] to DM and OB.


Subject(s)
Calcium-Binding Proteins , Cardiomyopathies , Induced Pluripotent Stem Cells , Membrane Proteins , Muscle Proteins , Muscular Dystrophy, Duchenne , Potassium Channels, Inwardly Rectifying , Action Potentials , Arrhythmias, Cardiac/metabolism , Calcium-Binding Proteins/genetics , Cardiomyopathies/metabolism , Dystrophin/genetics , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Membrane Proteins/genetics , Muscle Proteins/genetics , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Myocytes, Cardiac/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism
7.
Sci Rep ; 11(1): 18722, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34580343

ABSTRACT

Delayed gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) imaging requires novel and time-efficient approaches to characterize the myocardial substrate associated with ventricular arrhythmia in patients with ischemic cardiomyopathy. Using a translational approach in pigs and patients with established myocardial infarction, we tested and validated a novel 3D methodology to assess ventricular scar using custom transmural criteria and a semiautomatic approach to obtain transmural scar maps in ventricular models reconstructed from both 3D-acquired and 3D-upsampled-2D-acquired LGE-CMR images. The results showed that 3D-upsampled models from 2D LGE-CMR images provided a time-efficient alternative to 3D-acquired sequences to assess the myocardial substrate associated with ischemic cardiomyopathy. Scar assessment from 2D-LGE-CMR sequences using 3D-upsampled models was superior to conventional 2D assessment to identify scar sizes associated with the cycle length of spontaneous ventricular tachycardia episodes and long-term ventricular tachycardia recurrences after catheter ablation. This novel methodology may represent an efficient approach in clinical practice after manual or automatic segmentation of myocardial borders in a small number of conventional 2D LGE-CMR slices and automatic scar detection.


Subject(s)
Cardiomyopathies/diagnostic imaging , Cicatrix/pathology , Tachycardia, Ventricular/diagnostic imaging , Aged , Animals , Arrhythmias, Cardiac/pathology , Cardiomyopathies/metabolism , Cicatrix/diagnostic imaging , Computational Biology/methods , Contrast Media , Female , Gadolinium/pharmacology , Heart Ventricles/physiopathology , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Male , Middle Aged , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/physiopathology , Myocardial Ischemia/pathology , Myocardium/pathology , Recurrence , Swine , Tachycardia, Ventricular/physiopathology
8.
Rev. med. Risaralda ; 26(1): 47-60, ene.-jun. 2020. tab
Article in Spanish | LILACS, COLNAL | ID: biblio-1127003

ABSTRACT

Resumen Introducción: La pandemia por el Virus de Inmunodeficiencia Humana (VIH) y el Síndrome de Inmunodeficiencia Adquirida (SIDA) han generado numerosas pérdidas humanas, deterioro de la calidad de vida y consecuencias económicas negativas. Se han implementado programas de prevención para fortalecer el diagnóstico temprano y frenar la transición del VIH al SIDA. Objetivo: Hacer seguimiento de la notificación de VIH-SIDA para evaluar los atributos cualitativos y cuantitativos, de acuerdo con los procesos establecidos para la notificación al SIVIGILA, en Caquetá, Colombia. Métodos: Fue utilizada metodología de evaluación de sistemas de vigilancia de los CDC. Para evaluar los atributos cualitativos se realizaron encuestas virtuales a 47 responsables del sistema en diferentes entes territoriales. Para evaluar los atributos se revisaron documentos y bases de datos. Se realizó análisis cualitativos mediante triangulación en Epi-info y análisis cuantitativos usando medidas de frecuencia. Resultados: a)Simplicidad: es fácil el diligenciamiento de registros; b)Flexibilidad: el subsistema ha tenido diferentes cambios en definición de caso e inclusión de variables; c)Aceptabilidad: se reconoce la importancia de la vigilancia de VIH - SIDA y Mortalidad por SIDA; d) Oportunidad: No es oportuno, no se tiene una periodicidad establecida para el análisis de la información; e)Representatividad: no representan el total de los casos del territorio; f)Utilidad: el subsistema permite formulación de políticas públicas; g) Calidad: hubo 20 casos repetidos; h) Sensibilidad: no capta todas las mortalidades.


Abstract Introduction: HIV/AIDS is a global pandemic that has generated numerous human losses, life's quality deterioration, and unfavorable economic consequences. Several prevention programs have been implemented to strengthen early diagnosis and stop the transition from HIV to AIDS. Objective: To evaluate and follow-up on the qualitative and quantitative attributes of the HIV-AIDS notification process according to the established procedure of notification to the SIVIGILA in Caqueta, Colombia. Methods: Centers for Disease Control and Prevention's methodology was used for evaluating the subsystem. Virtual surveys were carried out in 47 people in charge of the system in different territorial entities, and documents and databases were reviewed to examine qualitative attributes. In terms of analysis, triangulation in Epi-info was made in qualitative aspects, and frequency measurements were used in quantitative aspects. Results: The results are divided into eight categories. a)Simplicity: it is easy to complete the records. b)Flexibility: the subsystem has had different changes in terms of case definition and the inclusion of variables. c)Acceptability: it is recognized the importance of monitoring HIV - AIDS and AIDS Mortality. d)Opportunity: It is not opportune; there is no periodicity for the information analysis. e)Representativeness: the total number of cases in the territory is not represented. f)Utility: the subsystem allows the formulation of public policies. g)Quality: there were 20 repeated cases. h)Sensibility: all mortalities are not taken into account.


Subject(s)
Humans , Policy Making , Acquired Immunodeficiency Syndrome , HIV , Epidemiological Monitoring , Quality of Life , Colombia , Aftercare , Evaluation Studies as Topic , Pandemics
9.
Int J Mol Sci ; 19(9)2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30131475

ABSTRACT

Auxin regulates diverse aspects of flower development in plants, such as differentiation of the apical meristem, elongation of the stamen, and maturation of anthers and pollen. It is known that auxin accumulates in pollen, but little information regarding the biological relevance of auxin in this tissue at different times of development is available. In this work, we manipulated the amount of free auxin specifically in developing pollen, using transgenic Arabidopsis lines that express the bacterial indole-3-acetic acid-lysine synthetase (iaaL) gene driven by a collection of pollen-specific promoters. The iaaL gene codes for an indole-3-acetic acid-lysine synthetase that catalyzes the conversion of free auxin into inactive indole-3-acetyl-l-lysine. The transgenic lines showed several abnormalities, including the absence of short stamina, a diminished seed set, aberrant pollen tubes, and perturbations in the synchronization of anther dehiscence and stamina development. This article describes the importance of auxin accumulation in pollen and its role in stamina and anther development.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/metabolism , Flowers/metabolism , Indoleacetic Acids/metabolism , Plant Development , Pollen/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Phenotype , Plant Growth Regulators/metabolism , Seeds/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...