Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Sep Sci ; 47(11): e2400286, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863086

ABSTRACT

The enantiomers of diquats (DQs), a new class of functional organic molecules, were recently separated by capillary electrophoresis (CE) with high resolution up to 11.4 within 5-7 min using randomly sulfated α-, ß-, and γ-cyclodextrins (CDs) as chiral selectors. These results indicated strong interactions between dicationic diquats and multiply negatively charged sulfated CDs (S-CDs). However, the binding strength of these interactions was not quantified. For that reason, in this study, affinity CE was applied for the determination of the binding constants and ionic mobilities of the complexes of DQ P- and M-enantiomers with CD chiral selectors in an aqueous medium. The non-covalent interactions of 10 pairs of DQ enantiomers with the above CDs were investigated in a background electrolyte (BGE) composed of 22 mM NaOH, 35 mM H3PO4, pH 2.5, and 0.0-1.0 mM concentrations of CDs. The average apparent binding constant and the average actual ionic mobility of the DQ-CD complexes were determined by nonlinear regression analysis of the dependence of the effective mobility of DQ enantiomers on the concentration of CDs in the BGE. The complexes were found to be relatively strong with the averaged apparent binding constants in the range 13 600-547 400 L/mol.

2.
J Sep Sci ; 46(18): e2300417, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37528727

ABSTRACT

Diquats, derivatives of the widely used herbicide diquat, represent a new class of functional organic molecules. A combination of their special electrochemical properties and axial chirality could potentially result in their important applications in supramolecular chemistry, chiral catalysis, and chiral analysis. However, prior to their practical applications, the diquats have to be prepared in enantiomerically pure forms and the enantiomeric purity of their P- and M-isomers has to be checked. Hence, a chiral capillary electrophoresis (CE) method has been developed and applied for separation of P- and M-enantiomers of 11 new diquats. Fast and better than baseline CE separations of enantiomers of all 11 diquats within a short time 5-7 min were achieved using acidic buffer, 22 mM NaOH, 35 mM H3 PO4 , pH 2.5, as a background electrolyte, and 6 mM randomly sulfated α-, ß-, and γ-cyclodextrins as chiral selectors. The most successful selector was sulfated γ-cyclodextrin, which baseline separated the enantiomers of all 11 diquats, followed by sulfated ß-cyclodextrin and sulfated α-cyclodextrin, which baseline separated enantiomers of 10 and nine diquats, respectively. Using this method, a high enantiopurity degree of the isolated P- and M-enantiomers of three diquats with a defined absolute configuration was confirmed and their migration order was identified.

SELECTION OF CITATIONS
SEARCH DETAIL
...