Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Oncol ; 12(1): 24-35, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30265974

ABSTRACT

Epithelial cells lining the intestinal mucosa constitute a selective-semipermeable barrier acting as first line of defense in the organism. The number of those cells remains constant during physiological conditions, but disruption of epithelial cell homeostasis has been observed in several pathologies. During colitis, epithelial cell proliferation decreases and cell death augments. The mechanism responsible for these changes remains unknown. Here, we show that the pro-inflammatory cytokine IFNγ contributes to the inhibition of epithelial cell proliferation in intestinal epithelial cells (IECs) by inducing the activation of mTORC1. Activation of mTORC1 in response to IFNγ was detected in IECs present along the crypt axis and in colonic macrophages. mTORC1 inhibition enhances cell proliferation, increases DNA damage in IEC. In macrophages, mTORC1 inhibition strongly reduces the expression of pro-inflammatory markers. As a consequence, mTORC1 inhibition exacerbated disease activity, increased mucosal damage, enhanced ulceration, augmented cell infiltration, decreased survival and stimulated tumor formation in a model of colorectal cancer CRC associated to colitis. Thus, our findings suggest that mTORC1 signaling downstream of IFNγ prevents epithelial DNA damage and cancer development during colitis.

2.
Cell Death Differ ; 23(6): 1060-72, 2016 06.
Article in English | MEDLINE | ID: mdl-26846144

ABSTRACT

Akt activation has been associated with proliferation, differentiation, survival and death of epithelial cells. Phosphorylation of Thr308 of Akt by phosphoinositide-dependent kinase 1 (PDK1) is critical for optimal stimulation of its kinase activity. However, the mechanism(s) regulating this process remain elusive. Here, we report that 14-3-3 proteins control Akt Thr308 phosphorylation during intestinal inflammation. Mechanistically, we found that IFNγ and TNFα treatment induce degradation of the PDK1 inhibitor, 14-3-3η, in intestinal epithelial cells. This mechanism requires association of 14-3-3ζ with raptor in a process that triggers autophagy and leads to 14-3-3η degradation. Notably, inhibition of 14-3-3 function by the chemical inhibitor BV02 induces uncontrolled Akt activation, nuclear Akt accumulation and ultimately intestinal epithelial cell death. Our results suggest that 14-3-3 proteins control Akt activation and regulate its biological functions, thereby providing a new mechanistic link between cell survival and apoptosis of intestinal epithelial cells during inflammation.


Subject(s)
14-3-3 Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , 14-3-3 Proteins/antagonists & inhibitors , 3-Phosphoinositide-Dependent Protein Kinases/antagonists & inhibitors , 3-Phosphoinositide-Dependent Protein Kinases/metabolism , Animals , Apoptosis/drug effects , Autophagy/drug effects , Benzamides/pharmacology , Cell Line , Colitis/chemically induced , Colitis/metabolism , Colitis/pathology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Interferon-gamma/pharmacology , Intestinal Mucosa/cytology , Male , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Subunits/antagonists & inhibitors , Protein Subunits/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrazoles/pharmacology , Signal Transduction/drug effects , Threonine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...