Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Neurología (Barc., Ed. impr.) ; 37(9): 781-793, noviembre 2022. ilus, tab
Article in Spanish | IBECS | ID: ibc-212369

ABSTRACT

Introducción: El glioblastoma multiforme es el tumor cerebral primario más común y con el pronóstico más desfavorable del sistema nervioso central. A pesar de los numerosos estudios y avances en medicina, este sigue siendo letal, con una esperanza de vida promedio de 15 meses posteriores a la quimiorradioterapia.DesarrolloRecientemente, se han estudiado diversos factores asociados al diagnóstico y el pronóstico de pacientes con glioblastoma, como la localización tumoral, principalmente la zona subventricular; una de las áreas neurogénicas más activas del cerebro humano adulto. Los pacientes con glioblastoma asociados a esta zona en particular presentan generalmente una mayor agresividad, lo que resulta en un pronóstico desfavorable y una menor esperanza de vida. Actualmente, se ha profundizado en el estudio de los microARN, los cuales reflejan patrones de expresión distintos en condiciones fisiológicas o fisiopatológicas. Está reportado que los niveles de expresión de ciertos microARN, principalmente aquellos relacionados a procesos neurogénicos, se ven desregulados en eventos oncogénicos, favoreciendo así la gliomagénesis y la agresividad tumoral. En la presente revisión se discuten algunos de los microARN más importantes implicados en procesos neurogénicos de la zona subventricular y su asociación con la agresividad del glioblastoma.ConclusionesLa regulación y función de los microARN desempeña un rol importante en el desarrollo y la progresión del glioblastoma; en consecuencia, la comprensión de las alteraciones de los microARN implicados en la diferenciación, así como en la maduración neural y glial, podrían ayudar a entender mejor las características malignas del glioblastoma. (AU)


Introduction: Glioblastoma multiforme is the most common primary brain tumour, with the least favourable prognosis. Despite numerous studies and medical advances, it continues to be lethal, with an average life expectancy of 15 months after chemo-radiotherapy.DevelopmentRecent research has addressed several factors associated with the diagnosis and prognosis of glioblastoma; one significant factor is tumour localisation, particularly the subventricular zone, which represents one of the most active neurogenic niches of the adult human brain. Glioblastomas in this area are generally more aggressive, resulting in unfavourable prognosis and a shorter life expectancy. Currently, the research into microRNAs (miRNA) has intensified, revealing different expression patterns under physiological and pathophysiological conditions. It has been reported that the expression levels of certain miRNAs, mainly those related to neurogenic processes, are dysregulated in oncogenic events, thus favouring gliomagenesis and greater tumour aggressiveness. This review discusses some of the most important miRNAs involved in subventricular neurogenic processes and their association with glioblastoma aggressiveness.ConclusionsMiRNA regulation and function play an important role in the development and progression of glioblastoma; understanding the alterations of certain miRNAs involved in both differentiation and neural and glial maturation could help us to better understand the malignant characteristics of glioblastoma. (AU)


Subject(s)
Humans , Neoplastic Cells, Circulating , Glioblastoma , Aggression , Neurogenesis , MicroRNAs
2.
Int J Mol Sci ; 23(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35806263

ABSTRACT

This study aimed to develop Ca2+ doped ZnO nanoparticles (NPs) and investigate their antibacterial properties against microorganisms of dental interest. Zn-Ca NPs were synthesized by the sol-gel method with different concentrations of Ca2+ (1, 3, and 5 wt. %) and subsequently characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis spectroscopy and Fourier transform infrared spectroscopy (FT-IR). The Kirby-Bauer method was used to measure antibacterial effects. NPs showed the wurzite phase of ZnO and bandgap energies (Eg) from 2.99 to 3.04 eV. SEM analysis showed an average particle size of 80 to 160 nm. The treatments that presented the best antibacterial activity were Zn-Ca 3% and Zn-Ca 5%. ZnO NPs represent an alternative to generate and improve materials with antibacterial capacity for dental applications.


Subject(s)
Metal Nanoparticles , Nanocomposites , Zinc Oxide , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Nanocomposites/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Zinc/pharmacology , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
3.
Neurologia (Engl Ed) ; 37(9): 781-793, 2022.
Article in English | MEDLINE | ID: mdl-34810139

ABSTRACT

INTRODUCTION: Glioblastoma multiforme is the most common primary brain tumour, with the least favourable prognosis. Despite numerous studies and medical advances, it continues to be lethal, with an average life expectancy of 15 months after chemo-radiotherapy. DEVELOPMENT: Recent research has addressed several factors associated with the diagnosis and prognosis of glioblastoma; one significant factor is tumour localisation, particularly the subventricular zone, which represents one of the most active neurogenic niches of the adult human brain. Glioblastomas in this area are generally more aggressive, resulting in unfavourable prognosis and a shorter life expectancy. Currently, the research into microRNAs (miRNA) has intensified, revealing different expression patterns under physiological and pathophysiological conditions. It has been reported that the expression levels of certain miRNAs, mainly those related to neurogenic processes, are dysregulated in oncogenic events, thus favouring gliomagenesis and greater tumour aggressiveness. This review discusses some of the most important miRNAs involved in subventricular neurogenic processes and their association with glioblastoma aggressiveness. CONCLUSIONS: MiRNA regulation and function play an important role in the development and progression of glioblastoma; understanding the alterations of certain miRNAs involved in both differentiation and neural and glial maturation could help us to better understand the malignant characteristics of glioblastoma.


Subject(s)
Brain Neoplasms , Glioblastoma , MicroRNAs , Adult , Humans , Glioblastoma/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Lateral Ventricles/metabolism , Lateral Ventricles/pathology , Neurogenesis
4.
Neurologia (Engl Ed) ; 2020 Jan 17.
Article in English, Spanish | MEDLINE | ID: mdl-31959491

ABSTRACT

INTRODUCTION: Glioblastoma multiforme is the most common primary brain tumour, with the least favourable prognosis. Despite numerous studies and medical advances, it continues to be lethal, with an average life expectancy of 15 months after chemo-radiotherapy. DEVELOPMENT: Recent research has addressed several factors associated with the diagnosis and prognosis of glioblastoma; one significant factor is tumour localisation, particularly the subventricular zone, which represents one of the most active neurogenic niches of the adult human brain. Glioblastomas in this area are generally more aggressive, resulting in unfavourable prognosis and a shorter life expectancy. Currently, the research into microRNAs (miRNA) has intensified, revealing different expression patterns under physiological and pathophysiological conditions. It has been reported that the expression levels of certain miRNAs, mainly those related to neurogenic processes, are dysregulated in oncogenic events, thus favouring gliomagenesis and greater tumour aggressiveness. This review discusses some of the most important miRNAs involved in subventricular neurogenic processes and their association with glioblastoma aggressiveness. CONCLUSIONS: MiRNA regulation and function play an important role in the development and progression of glioblastoma; understanding the alterations of certain miRNAs involved in both differentiation and neural and glial maturation could help us to better understand the malignant characteristics of glioblastoma.

5.
Neurologia (Engl Ed) ; 35(3): 147-154, 2020 Apr.
Article in English, Spanish | MEDLINE | ID: mdl-29132915

ABSTRACT

INTRODUCTION: Chronic kidney disease (CKD) can cause anaemia and neurological disorders. Recombinant human erythropoietin (rHuEPO) is used to manage anaemia in CKD. However, there is little evidence on the effects of rHuEPO on behaviour and cognitive function in CKD. This study aimed to evaluate the impact of rHuEPO in sensorimotor and cognitive functions in a CKD model. METHODS: Male Wistar rats were randomly assigned to 4 groups: control and CKD, with and without rHuEPO treatment (1050 IU per kg body weight, once weekly for 4 weeks). The Morris water maze, open field, and adhesive removal tests were performed simultaneously to kidney damage induction and treatment. Markers of anaemia and renal function were measured at the end of the study. RESULTS: Treatment with rHuEPO reduced kidney damage and corrected anaemia in rats with CKD. We observed reduced sensorimotor dysfunction in animals with CKD and treated with rHuEPO. These rats also completed the water maze test in a shorter time than the control groups. CONCLUSIONS: rHuEPO reduces kidney damage, corrects anemia, and reduces sensorimotor and cognitive dysfunction in animals with CKD.


Subject(s)
Anemia/drug therapy , Erythropoietin/therapeutic use , Recombinant Proteins/therapeutic use , Renal Insufficiency, Chronic/complications , Anemia/etiology , Animals , Cognitive Dysfunction/complications , Humans , Iron/metabolism , Male , Rats , Rats, Wistar , Renal Insufficiency, Chronic/blood
6.
Neurologia (Engl Ed) ; 34(2): 114-124, 2019 Mar.
Article in English, Spanish | MEDLINE | ID: mdl-27342389

ABSTRACT

INTRODUCTION: Parkinson's disease is a progressive neurodegenerative disorder characterised by a loss of dopaminergic neurons in the substantia nigra pars compacta, which results in a significant decrease in dopamine levels and consequent functional motor impairment. DEVELOPMENT: Although its aetiology is not fully understood, several pathogenic mechanisms, including oxidative stress, have been proposed. Current therapeutic approaches are based on dopamine replacement drugs; these agents, however, are not able to stop or even slow disease progression. Novel therapeutic approaches aimed at acting on the pathways leading to neuronal dysfunction and death are under investigation. CONCLUSIONS: In recent years, such natural molecules as polyphenols, alkaloids, and saponins have been shown to have a neuroprotective effect due to their antioxidant and anti-inflammatory properties. The aim of our review is to analyse the most relevant studies worldwide addressing the benefits of some phytochemicals used in in vitro models of Parkinson's disease.


Subject(s)
Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Phytochemicals/pharmacology , Alkaloids/pharmacology , Animals , Humans , Polyphenols/pharmacology , Saponins/pharmacology
7.
Plant Foods Hum Nutr ; 71(4): 416-421, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27679439

ABSTRACT

Fructans from agave have received specific attention because of their highly branched fructan content. We have previously reported that the degree of polymerization (dp) influences their biological activity. Therefore, the aim of this study was to investigate the effect of unfractionated and fractionated fructans (higher and lower dps) from Agave tequilana in high-fat diet-induced (HFD) obese mice. Fructans with a lower dp (HFD+ScF) decreased weight gain by 30 %, body fat mass by 51 %, hyperglycemia by 25 % and liver steatosis by 40 %. Interestingly, unfractionated fructans (HFD+F) decreased glucose and triglycerides (TG), whereas fractionated fructans with a higher dp (HFD+LcF) decreased TG but not glucose; in contrast, HFD+ScF decreased glucose but not TG. Our findings suggest that both higher and lower dp agave fructans have complementary effects in metabolic disorders related to obesity. These findings may contribute to the development of improved food supplements with a specific ratio combination of fructans with different dps.


Subject(s)
Agave/chemistry , Fatty Liver/prevention & control , Fructans/pharmacology , Hyperglycemia/prevention & control , Obesity/prevention & control , Animals , Blood Glucose/metabolism , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Diet, High-Fat , Fructans/analysis , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/chemically induced , Plant Extracts/analysis , Plant Extracts/pharmacology , Polymerization , Triglycerides/blood , Weight Gain/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...