Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurodegener ; 16(1): 40, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34172091

ABSTRACT

BACKGROUND: There is an association between repetitive head injury (RHI) and a pathologic diagnosis of chronic traumatic encephalopathy (CTE) characterized by the aggregation of proteins including tau. The underlying molecular events that cause these abnormal protein accumulations remain unclear. Here, we hypothesized that identifying the human brain proteome from serial CTE stages (CTE I-IV) would provide critical new insights into CTE pathogenesis. Brain samples from frontotemporal lobar degeneration due to microtubule associated protein tau (FTLD-MAPT) mutations were also included as a distinct tauopathy phenotype for comparison. METHODS: Isobaric tandem mass tagged labeling and mass spectrometry (TMT-MS) followed by integrated differential and co-expression analysis (i.e., weighted gene co-expression network analysis (WGCNA)) was used to define modules of highly correlated proteins associated with clinical and pathological phenotypes in control (n = 23), CTE (n = 43), and FTLD-MAPT (n = 12) post-mortem cortical tissues. We also compared these findings to network analysis of AD brain. RESULTS: We identified over 6000 unique proteins across all four CTE stages which sorted into 28 WGCNA modules. Consistent with Alzheimer's disease, specific modules demonstrated reduced neuronal protein levels, suggesting a neurodegeneration phenotype, while other modules were increased, including proteins associated with inflammation and glial cell proliferation. Notably, unique CTE-specific modules demonstrated prominent enrichment of immunoglobulins, including IGHM and IGLL5, and extracellular matrix (ECM) proteins as well as progressive protein changes with increasing CTE pathologic stage. Finally, aggregate cell subtype (i.e., neurons, microglia, astrocytes) protein abundance levels in CTE cases were similar in expression to AD, but at intermediate levels between controls and the more exaggerated phenotype of FTLD-MAPT, especially in astrocytes. CONCLUSIONS: Overall, we identified thousands of protein changes in CTE postmortem brain and demonstrated that CTE has a pattern of neurodegeneration in neuronal-synaptic and inflammation modules similar to AD. We also identified unique CTE progressive changes, including the enrichment of immunoglobulins and ECM proteins even in early CTE stages. Early and sustained changes in astrocyte modules were also observed. Overall, the prominent overlap with FTLD-MAPT cases confirmed that CTE is on the tauopathy continuum and identified CTE stage specific molecular phenotypes that provide novel insights into disease pathogenesis.


Subject(s)
Chronic Traumatic Encephalopathy/metabolism , Chronic Traumatic Encephalopathy/pathology , Proteomics/methods , Brain/metabolism , Brain/pathology , Humans , Phenotype
2.
Clin Cancer Res ; 24(19): 4854-4864, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29945997

ABSTRACT

Purpose: Despite the challenge to directly target mutant KRAS due to its high GTP affinity, some agents are under development against downstream signaling pathways, such as MEK inhibitors. However, it remains controversial whether MEK inhibitors can boost current chemotherapy in KRAS-mutant lung tumors in clinic. Considering the genomic heterogeneity among patients with lung cancer, it is valuable to test potential therapeutics in KRAS mutation-driven mouse models.Experimental Design: We first compared the pERK1/2 level in lung cancer samples with different KRAS substitutions and generated a new genetically engineered mouse model whose tumor was driven by KRAS G12C, the most common KRAS mutation in lung cancer. Next, we evaluated the efficacy of selumetinib or its combination with chemotherapy, in KRASG12C tumors compared with KRASG12D tumors. Moreover, we generated KRASG12C/p53R270H model to explore the role of a dominant negative p53 mutation detected in patients in responsiveness to MEK inhibition.Results: We determined higher pERK1/2 in KRASG12C lung tumors compared with KRASG12D Using mouse models, we further identified that KRASG12C tumors are significantly more sensitive to selumetinib compared with KrasG12D tumors. MEK inhibition significantly increased chemotherapeutic efficacy and progression-free survival of KRASG12C mice. Interestingly, p53 co-mutation rendered KRASG12C lung tumors less sensitive to combination treatment with selumetinib and chemotherapy.Conclusions: Our data demonstrate that unique KRAS mutations and concurrent mutations in tumor-suppressor genes are important factors for lung tumor responses to MEK inhibitor. Our preclinical study supports further clinical evaluation of combined MEK inhibition and chemotherapy for lung cancer patients harboring KRAS G12C and wild-type p53 status. Clin Cancer Res; 24(19); 4854-64. ©2018 AACR.


Subject(s)
Benzimidazoles/administration & dosage , Lung Neoplasms/drug therapy , MAP Kinase Kinase Kinase 1/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Suppressor Protein p53/genetics , Allografts , Animals , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MAP Kinase Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Signaling System/drug effects , Male , Mice , Middle Aged , Mutation , NIH 3T3 Cells , Protein Kinase Inhibitors/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...