Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38659793

ABSTRACT

One of the mechanisms that can lead to the formation of new species occurs through the evolution of reproductive barriers. However, recent research has demonstrated that hybridization has been pervasive across the tree of life even in the presence of strong barriers. Swordtail fishes (genus Xiphophorus) are an emerging model system for studying the interface between these barriers and hybridization. We document overlapping mechanisms that act as barriers between closely related species, X. birchmanni and X. cortezi, by combining genomic sequencing from natural hybrid populations, artificial crosses, behavioral assays, sperm performance, and developmental studies. We show that strong assortative mating plays a key role in maintaining subpopulations with distinct ancestry in natural hybrid populations. Lab experiments demonstrate that artificial F1 crosses experience dysfunction: crosses with X. birchmanni females were largely inviable and crosses with X. cortezi females had a heavily skewed sex ratio. Using F2 hybrids we identify several genomic regions that strongly impact hybrid viability. Strikingly, two of these regions underlie genetic incompatibilities in hybrids between X. birchmanni and its sister species X. malinche. Our results demonstrate that ancient hybridization has played a role in the origin of this shared genetic incompatibility. Moreover, ancestry mismatch at these incompatible regions has remarkably similar consequences for phenotypes and hybrid survival in X. cortezi × X. birchmanni hybrids as in X. malinche × X. birchmanni hybrids. Our findings identify varied reproductive barriers that shape genetic exchange between naturally hybridizing species and highlight the complex evolutionary outcomes of hybridization.

2.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187753

ABSTRACT

Over the past two decades, evolutionary biologists have come to appreciate that hybridization, or genetic exchange between distinct lineages, is remarkably common - not just in particular lineages but in taxonomic groups across the tree of life. As a result, the genomes of many modern species harbor regions inherited from related species. This observation has raised fundamental questions about the degree to which the genomic outcomes of hybridization are repeatable and the degree to which natural selection drives such repeatability. However, a lack of appropriate systems to answer these questions has limited empirical progress in this area. Here, we leverage independently formed hybrid populations between the swordtail fish Xiphophorus birchmanni and X. cortezi to address this fundamental question. We find that local ancestry in one hybrid population is remarkably predictive of local ancestry in another, demographically independent hybrid population. Applying newly developed methods, we can attribute much of this repeatability to strong selection in the earliest generations after initial hybridization. We complement these analyses with time-series data that demonstrates that ancestry at regions under selection has remained stable over the past ~40 generations of evolution. Finally, we compare our results to the well-studied X. birchmanni×X. malinche hybrid populations and conclude that deeper evolutionary divergence has resulted in stronger selection and higher repeatability in patterns of local ancestry in hybrids between X. birchmanni and X. cortezi.

3.
Mol Biol Rep ; 47(1): 731-736, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31696429

ABSTRACT

The Neotropical otter, Lontra longicaudis, is an ecologically important species for freshwater ecosystems that is threatened due to habitat destruction and hunting. However, there is limited information regarding the population sizes, genetic diversity, genetic structure and gene flow of the species, which is crucial for the elaboration of conservation plans. The aim of this study was to isolate and characterize microsatellites for L. longicaudis, using Illumina paired-end-sequencing. Initial amplification tests were performed in 48 loci, out of which, 13 yielded high-quality PCR products and thus were further evaluated. Genetic diversity and discrimination power of the 13 microsatellite loci was assessed using 19 non-invasive samples collected in the Jamapa basin in Veracruz, Mexico and blood samples from six captive individuals. All loci were polymorphic, the number of alleles per locus ranged from 4 to 10, the observed heterozygosity from 0.21 to 0.69, and the expected heterozygosity from 0.55 to 0.82. The combined set of 13 microsatellites showed a high power for discriminating among individuals (probability of identity PID = 1.551 × 10-16) and among siblings (probability of identity of siblings PIDSIB = 3.349 × 10-06). A combination of nine loci are sufficient to discriminate among siblings with high confidence (PIDSIB < 0.0001). The new set of microsatellites for the Neotropical otter reported here will provide a useful genetic tool to assess population genetic patterns and ecological parameters of the species.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Microsatellite Repeats/genetics , Otters/genetics , Animals , Ecosystem , Freshwater Biology , Genetic Variation/genetics , Genetics, Population/methods , Mexico , Polymerase Chain Reaction
4.
Mol Phylogenet Evol ; 99: 76-88, 2016 06.
Article in English | MEDLINE | ID: mdl-26988412

ABSTRACT

By integrating mitochondrial DNA (mtDNA), microsatellites and ecological niche modelling (ENM), we investigated the phylogeography of Mexican populations of the common bush-tanager Chlorospingus ophthalmicus to examine the relative role of geographical and ecological features, as well as Pleistocene climatic oscillations in driving the diversification. We sequenced mtDNA of individuals collected throughout the species range in Mexico and genotyped them at seven microsatellite loci. Phylogeographic, population genetics and coalescent methods were used to assess patterns of genetic structure, gene flow and demographic history. ENM was used to infer contractions and expansions at different time periods as well as differences in climatic conditions among lineages. The retrieved mitochondrial and microsatellite groups correspond with the fragmented cloud forest distribution in mountain ranges and morphotectonic provinces. Differing climatic conditions between mountain ranges were detected, and palaeodistribution modelling as well as demographic history analyses, indicated recent population expansions throughout the Sierra Madre Oriental (SMO). The marked genetic structure of C. ophthalmicus was promoted by the presence of ecological and geographical barriers that restricted the movement of individuals among mountain ranges. The SMO was mainly affected by Pleistocene climatic oscillations, with the moist forests model best fitting the displayed genetic patterns of populations in this mountain range.


Subject(s)
Climate , Ecosystem , Forests , Genetic Variation , Passeriformes/genetics , Phylogeography , Animal Migration , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Genetics, Population , Haplotypes/genetics , Mexico , Microsatellite Repeats/genetics , Mitochondria/genetics , Phylogeny , Time Factors
5.
Mol Ecol Resour ; 13(4): 760-2, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23693143

ABSTRACT

This article documents the addition of 142 microsatellite marker loci to the Molecular Ecology Resources database. Loci were developed for the following species: Agriophyllum squarrosum, Amazilia cyanocephala, Batillaria attramentaria, Fungal strain CTeY1 (Ascomycota), Gadopsis marmoratus, Juniperus phoenicea subsp. turbinata, Liriomyza sativae, Lupinus polyphyllus, Metschnikowia reukaufii, Puccinia striiformis and Xylocopa grisescens. These loci were cross-tested on the following species: Amazilia beryllina, Amazilia candida, Amazilia rutila, Amazilia tzacatl, Amazilia violiceps, Amazilia yucatanensis, Campylopterus curvipennis, Cynanthus sordidus, Hylocharis leucotis, Juniperus brevifolia, Juniperus cedrus, Juniperus osteosperma, Juniperus oxycedrus, Juniperus thurifera, Liriomyza bryoniae, Liriomyza chinensis, Liriomyza huidobrensis and Liriomyza trifolii.


Subject(s)
Computational Biology/methods , Genomics/methods , Microsatellite Repeats , Animals , Bees/genetics , Birds/genetics , Fishes/genetics , Fungi/genetics , Plants/genetics
6.
PLoS One ; 8(2): e56283, 2013.
Article in English | MEDLINE | ID: mdl-23409165

ABSTRACT

Comparative phylogeography can elucidate the influence of historical events on current patterns of biodiversity and can identify patterns of co-vicariance among unrelated taxa that span the same geographic areas. Here we analyze temporal and spatial divergence patterns of cloud forest plant and animal species and relate them to the evolutionary history of naturally fragmented cloud forests--among the most threatened vegetation types in northern Mesoamerica. We used comparative phylogeographic analyses to identify patterns of co-vicariance in taxa that share geographic ranges across cloud forest habitats and to elucidate the influence of historical events on current patterns of biodiversity. We document temporal and spatial genetic divergence of 15 species (including seed plants, birds and rodents), and relate them to the evolutionary history of the naturally fragmented cloud forests. We used fossil-calibrated genealogies, coalescent-based divergence time inference, and estimates of gene flow to assess the permeability of putative barriers to gene flow. We also used the hierarchical Approximate Bayesian Computation (HABC) method implemented in the program msBayes to test simultaneous versus non-simultaneous divergence of the cloud forest lineages. Our results show shared phylogeographic breaks that correspond to the Isthmus of Tehuantepec, Los Tuxtlas, and the Chiapas Central Depression, with the Isthmus representing the most frequently shared break among taxa. However, dating analyses suggest that the phylogeographic breaks corresponding to the Isthmus occurred at different times in different taxa. Current divergence patterns are therefore consistent with the hypothesis of broad vicariance across the Isthmus of Tehuantepec derived from different mechanisms operating at different times. This study, coupled with existing data on divergence cloud forest species, indicates that the evolutionary history of contemporary cloud forest lineages is complex and often lineage-specific, and thus difficult to capture in a simple conservation strategy.


Subject(s)
Endangered Species/statistics & numerical data , Evolution, Molecular , Trees/genetics , Americas , Animals , Gene Flow , Genetic Variation , Phylogeography , Plants/classification , Plants/genetics , Sequence Analysis, DNA , Spatio-Temporal Analysis , Trees/classification
7.
Mol Phylogenet Evol ; 61(3): 603-15, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21930221

ABSTRACT

Several phylogeographic studies in northern Mesoamerica have examined the influence of Pleistocene glaciations on the genetic structure of temperate tree species with their southern limit by the contact zone between species otherwise characteristic of North or South America, but few have featured plant species that presumably colonized northern Mesoamerica from South America. A phylogeographical study of Palicourea padifolia, a fleshy-fruited, bird dispersed distylous shrub, was conducted to investigate genetic variation at two chloroplast regions (trnS-trnG and rpl32-trnL) across cloud forest areas to determine if such patterns are consistent with the presence of Pleistocene refugia and/or with the historical fragmentation of the Mexican cloud forests. We conducted population and spatial genetic analyses as well as phylogenetic and isolation with migration analyses on 122 individuals from 22 populations comprising the distribution of P. padifolia in Mexico to gain insight of the evolutionary history of these populations. Twenty-six haplotypes were identified after sequencing 1389 bp of chloroplast DNA. These haplotypes showed phylogeographic structure (N(ST) = 0.508, G(ST) = 0.337, N(ST) > G(ST), P < 0.05), including a phylogeographic break at the Isthmus of Tehuantepec, with private haplotypes at either side of the isthmus, and a divergence time of the split in the absence of gene flow dating back c. 309,000-103,000 years ago. The patterns of geographic structure found in this study are consistent with past fragmentation and demographic range expansion, supporting the role of the Isthmus of Tehuantepec as a biogeographical barrier in the dispersal of P. padifolia. Our data suggest that P. padifolia populations were isolated throughout glacial cycles by the Isthmus of Tehuantepec, accumulating genetic differences due to the lack of migration across the isthmus in either direction, but the results of our study are not consistent with the existence of the previously proposed Pleistocene refugia for rain forest plant species in the region.


Subject(s)
DNA, Chloroplast/genetics , Flowers/genetics , Phylogeography , Rubiaceae/growth & development , Rubiaceae/genetics , Trees/growth & development , Trees/genetics , Genetic Variation , Haplotypes/genetics , Mexico , Molecular Sequence Data , Population Dynamics , Time Factors
8.
Am J Bot ; 98(7): e164-6, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21700802

ABSTRACT

PREMISE OF THE STUDY: Eighteen microsatellite loci of distylous Palicourea padifolia were isolated and characterized for population genetics studies. METHODS AND RESULTS: Following a microsatellite enrichment protocol, 18 primer pairs amplified successfully, and the polymorphism of the loci was initially evaluated in 15 individuals from three populations in Mexico. Seven loci were polymorphic, and their variability was further assessed in 60 individuals from three populations. The total number of alleles per locus, combining samples from all populations, ranged from 7 to 12. Nei's genetic diversity average across loci was 0.681, 0.714, and 0.703 for El Riscal, Montebello, and Ruiz Cortínez, respectively. Palicourea padifolia individuals had one to four alleles, confirming the polyploidy of this species. CONCLUSIONS: These markers will facilitate genetic diversity studies of P. padifolia across its distribution range and facilitate investigations on the evolution of its breeding system.


Subject(s)
DNA, Plant/genetics , DNA, Plant/isolation & purification , Flowers/genetics , Microsatellite Repeats/genetics , Rubiaceae/genetics , Alleles , Genetic Loci/genetics , Genetic Markers/genetics , Molecular Sequence Data , Polymorphism, Genetic , Sample Size
9.
BMC Evol Biol ; 11: 38, 2011 Feb 08.
Article in English | MEDLINE | ID: mdl-21299905

ABSTRACT

BACKGROUND: Mesoamerica is one of the most threatened biodiversity hotspots in the world, yet we are far from understanding the geologic history and the processes driving population divergence and speciation for most endemic taxa. In species with highly differentiated populations selective and/or neutral factors can induce rapid changes to traits involved in mate choice, promoting reproductive isolation between allopatric populations that can eventually lead to speciation. We present the results of genetic differentiation, and explore drift and selection effects in promoting acoustic and morphological divergence among populations of Campylopterus curvipennis, a lekking hummingbird with an extraordinary vocal variability across Mesoamerica. RESULTS: Analyses of two mitochondrial genes and ten microsatellite loci genotyped for 160 individuals revealed the presence of three lineages with no contemporary gene flow: C. c. curvipennis, C. c. excellens, and C. c. pampa disjunctly distributed in the Sierra Madre Oriental, the Tuxtlas region and the Yucatan Peninsula, respectively. Sequence mtDNA and microsatellite data were congruent with two diversification events: an old vicariance event at the Isthmus of Tehuantepec (c. 1.4 Ma), and a more recent Pleistocene split, isolating populations in the Tuxtlas region. Hummingbirds of the excellens group were larger, and those of the pampa group had shorter bills, and lineages that have been isolated the longest shared fewer syllables and differed in spectral and temporal traits of a shared syllable. Coalescent simulations showed that fixation of song types has occurred faster than expected under neutrality but the null hypothesis that morphological divergence resulted from drift was not rejected. CONCLUSIONS: Our phylogeographic analyses uncovered the presence of three Mesoamerican wedge-tailed sabrewing lineages, which diverged at different time scales. These results highlight the importance of the Isthmus of Tehuantepec and more recent Pleistocene climatic events in driving isolation and population divergence. Coalescent analyses of the evolution of phenotypic traits suggest that selection is driving song evolution in wedge-tailed sabrewings but drift could not be rejected as a possibility for morphological divergence.


Subject(s)
Birds/genetics , Genetic Drift , Phylogeography , Selection, Genetic , Animals , Bayes Theorem , Birds/anatomy & histology , DNA, Mitochondrial/genetics , Ecosystem , Female , Gene Flow , Genetic Variation , Genotype , Male , Mexico , Microsatellite Repeats , Sequence Analysis, DNA , Vocalization, Animal
10.
Mol Ecol Resour ; 10(1): 232-6, 2010 Jan.
Article in English | MEDLINE | ID: mdl-21565018

ABSTRACT

This article documents the addition of 238 microsatellite marker loci and 72 pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Adelges tsugae, Artemisia tridentata, Astroides calycularis, Azorella selago, Botryllus schlosseri, Botrylloides violaceus, Cardiocrinum cordatum var. glehnii, Campylopterus curvipennis, Colocasia esculenta, Cynomys ludovicianus, Cynomys leucurus, Cynomys gunnisoni, Epinephelus coioides, Eunicella singularis, Gammarus pulex, Homoeosoma nebulella, Hyla squirella, Lateolabrax japonicus, Mastomys erythroleucus, Pararge aegeria, Pardosa sierra, Phoenicopterus ruber ruber and Silene latifolia. These loci were cross-tested on the following species: Adelges abietis, Adelges cooleyi, Adelges piceae, Pineus pini, Pineus strobi, Tubastrea micrantha, three other Tubastrea species, Botrylloides fuscus, Botrylloides simodensis, Campylopterus hemileucurus, Campylopterus rufus, Campylopterus largipennis, Campylopterus villaviscensio, Phaethornis longuemareus, Florisuga mellivora, Lampornis amethystinus, Amazilia cyanocephala, Archilochus colubris, Epinephelus lanceolatus, Epinephelus fuscoguttatus, Symbiodinium temperate-A clade, Gammarus fossarum, Gammarus roeselii, Dikerogammarus villosus and Limnomysis benedeni. This article also documents the addition of 72 sequencing primer pairs and 52 allele specific primers for Neophocaena phocaenoides.

11.
Mol Phylogenet Evol ; 50(1): 1-15, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18940261

ABSTRACT

Coral reef anthozoans exhibit extensive morphological variation across and within environmental clines making it difficult to define species boundaries. The relative contributions of genetic variation and ecophenotypic plasticity to the observed phenotypic variation are unknown in most cases. The branching octocoral Pseudopterogorgia elisabethae is widely distributed throughout the Caribbean and colonies vary in appearance within and among populations. We performed genetic and morphological analyses of P.elisabethae from multiple locations within the Bahamas, as well as a Florida Keys and a distant western Caribbean location to determine the levels of genetic and morphological variation (colony form and sclerites characteristics) across populations from different sites, and assessed whether there was congruence between the genetic and morphological variation. Based on sequences of the internal transcribed spacer region of the ribosomal DNA, four groups were found that generally correspond to the geography of the Bahamas. Morphometric analysis of branch and branchlet characteristics indicated that colonies from two of the sites differed from the rest, but there was no clear correspondence between genetic and morphological variation. In general, there were no qualitative differences in the sclerites from the different populations. However, there were some differences in the dimensions of scaphoids and rods of colonies from different sites. This study has shown that P. elisabethae displays genetic and morphologic variation among some populations of the Bahamas, Florida and San Andres, Colombia. P. elisabethae is harvested in the Bahamas and these findings should be considered in management plans and conservation efforts for the species.


Subject(s)
Anthozoa/anatomy & histology , Anthozoa/genetics , Phylogeny , Animals , Anthozoa/classification , Base Sequence , Caribbean Region , Florida , Haplotypes , Microscopy, Electron, Scanning , Oceans and Seas , Population Dynamics
12.
Mol Phylogenet Evol ; 43(1): 111-23, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17194605

ABSTRACT

Swordtail fish have been studied extensively in relation to diverse aspects of biology; however, little attention has been paid to the patterns of genetic variation within and among populations of swordtails. In this study, we sequenced the mtDNA control region from 65 individuals and 10 populations of Xiphophorus cortezi to investigate the genetic variation within and among populations, including tests for correlations between genetic and geographic distances and tests for species monophyly. We found low gene and nucleotide diversity within populations and high degrees of genetic differentiation among populations. Significant and positive correlations between genetic distance and both river and straight-line geographic distance indicate that genetic differentiation among X. cortezi populations can be explained, to some extent, by an isolation-by-distance model and provide evidence of stream capture. Phylogenetic analyses suggest that X. cortezi is paraphyletic relative to X. malinche, raising questions concerning the status of these taxa as separate species.


Subject(s)
Cyprinodontiformes/genetics , Demography , Genetic Variation , Genetics, Population , Phylogeny , Animals , Base Sequence , Cyprinodontiformes/classification , DNA Primers , DNA, Mitochondrial/genetics , Geography , Likelihood Functions , Models, Genetic , Models, Theoretical , Molecular Sequence Data , Sequence Analysis, DNA
13.
Mol Ecol ; 13(8): 2211-21, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15245395

ABSTRACT

The primary mechanism of gene flow in marine sessile invertebrates is larval dispersal. In Pseudopterogorgia elisabethae, a commercially important Caribbean gorgonian coral, a proportion of the larvae drop to the substratum within close proximity to the maternal colony, and most matings occur between individuals in close proximity to each other. Such limited dispersal of reproductive propagules suggests that gene flow is limited in this gorgonian. In this study, we characterized the population genetic structure of P. elisabethae across the Bahamas using six microsatellite loci. P. elisabethae was collected from 18 sites across the Bahamas. Significant deviations from Hardy-Weinberg equilibrium due to deficits of heterozygotes within populations were detected for all 18 populations in at least one of the six screened loci. Levels of genetic structure among populations of P. elisabethae were high and significant. A distance analysis placed populations within three groups, one formed by populations located within Exuma Sound, a semi-isolated basin, another consisting of populations located outside the basin and a third group comprising two populations from San Salvador Island. The patterns of genetic variation found in this study are concordant with the life-history traits of the species and in part with the geography of the Bahamas. Conservation and management plans developed for P. elisabethae should considered the high degree of genetic structure observed among populations of the species, as well as the high genetic diversity found in the San Salvador and the Exuma Sound populations.


Subject(s)
Anthozoa/genetics , Genetic Variation , Genetics, Population , Microsatellite Repeats/genetics , Animals , Atlantic Ocean , Bahamas , Cluster Analysis , Conservation of Natural Resources , DNA Primers , Gene Frequency , Genetic Carrier Screening , Geography
14.
Mar Biotechnol (NY) ; 5(2): 130-40, 2003.
Article in English | MEDLINE | ID: mdl-12876648

ABSTRACT

A protocol that takes advantage of length heteroplasmy in domain V of chloroplast large subunit (cp23S)-ribosomal DNA to identify members of the symbiotic dinoflagellate genus Symbiodinium is presented. This protocol is highly specific for Symbiodinium, can provide intercladal and intracladal identification of a particular Symbiodinium isolate, and can detect multiple Symbiodinium chloroplast genotypes simultaneously in the same isolate, making his technique attractive for a variety of research questions. We used this technique to characterize variation among Symbiodinium populations associated with a range of phylogenetically diverse and geographically discrete hosts. We also examined symbiont variation within a single host, the Caribbean gorgonian Pseudopterogorgia elisabethae, from 9 sites in the Bahamas, and we report a previously undocumented level of symbiont specificity for particular members of Symbiodinium clade B in this gorgonian.


Subject(s)
Chloroplasts/genetics , DNA, Chloroplast/isolation & purification , DNA, Ribosomal/isolation & purification , Dinoflagellida/classification , Dinoflagellida/genetics , Phylogeny , Animals , Anthozoa , DNA, Chloroplast/genetics , DNA, Protozoan/genetics , DNA, Protozoan/isolation & purification , DNA, Ribosomal/genetics , Dinoflagellida/isolation & purification , Genetic Testing/methods , Polymorphism, Restriction Fragment Length , Protein Structure, Tertiary/genetics , Symbiosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...