Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 13(10)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34684023

ABSTRACT

Ultrasmall iron oxide nanoparticles (<10 nm) were loaded with cis-diamminetetrachloroplatinum (IV), a cisplatin (II) prodrug, and used as an efficient nanodelivery system in cell models. To gain further insight into their behavior in ovarian cancer cells, the level of cellular incorporation as well as the platination of mitochondrial and nuclear DNA were measured using inductively coupled plasma mass spectrometry (ICP-MS) strategies. Quantitative Pt results revealed that after 24 h exposure to 20 µM Pt in the form of the Pt(IV)-loaded nanoparticles, approximately 10% of the incorporated Pt was associated with nuclear DNA. This concentration increased up to 60% when cells were left to stand in drug-free media for 3 h. These results indicated that the intracellular reducing conditions permitted the slow release of cisplatin (II) from the cisplatin (IV)-loaded nanoparticles. Similar results were obtained for the platination of mitochondrial DNA, which reached levels up to 17,400 ± 75 ng Pt/ mg DNA when cells were left in drug-free media for 3 h, proving that this organelle was also a target for the action of the released cisplatin (II). The time-dependent formation of Pt-DNA adducts could be correlated with the time-dependent decrease in cell viability. Such a decrease in cell viability was correlated with the induction of apoptosis as the main route of cell death. The formation of autophagosomes, although observed upon exposure in treated cells, does not seem to have played an important role as a means for cells to overcome nanoparticles' toxicity. Thus, the designed nanosystem demonstrated high cellular penetration and the "in situ" production of the intracellularly active cisplatin (II), which is able to induce cell death, in a sustained manner.

2.
Anal Chim Acta ; 1159: 338356, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33867043

ABSTRACT

Ultrasmall iron oxide nanoparticles (<10 nm) were explored here as nanotransporters of cis-diamminetetrachloroplatinum (IV) (a cisplatin prodrug) in cellular models. The coating of the particles containing reactive carboxylic acid groups enabled the formation of a stable conjugate between the prodrug and the nanoparticles using one pot reaction. The nanoconjugate was characterized by different techniques exhibiting diameters of about 6.6 ± 1.0 nm. The use of a hyphenated strategy based on high performance liquid chromatography (HPLC) coupled to inductively coupled plasma mass spectrometry (ICP-MS) permitted the quantitative evaluation of Fe and Pt in the nanoconjugate. Furthermore, the cellular uptake of the synthetic nanoconjugate was explored by single cell-ICP-MS (SC-ICP) which was used for the first time in this type of studies. The experiments in A2780 and A2780cis, sensitive and resistant ovarian cancer cell models respectively, revealed intracellular platinum concentrations of 12 fg/cell and 4 fg/cell, respectively which were 4-fold higher with respect to the uptake of cisplatin in both models. Intracellular drug release from the nanoconjugate was proved by measuring DNA platination in the same cells. In this case, levels of about 250 ng Pt/mg DNA were observed, about 5-fold higher when the nanoconjugate was used in comparison to cisplatin. Furthermore, the differences between the two lines turned to be significantly smaller than in the case of using cisplatin. The quantitative analytical tools developed here provided essential information required to fully characterize the developed nanoplatforms particularly important to overcome drug resistance.


Subject(s)
Antineoplastic Agents , Nanoparticles , Ovarian Neoplasms , Prodrugs , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cisplatin , Female , Humans , Magnetic Iron Oxide Nanoparticles , Nanoconjugates/therapeutic use , Ovarian Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...