Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 20(6): e1012303, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38885287

ABSTRACT

Chlamydia trachomatis is a clinically important bacterium that infects epithelial cells of the genitourinary and respiratory tracts and the eye. These differentiated cells are in a quiescent growth state and have a surface organelle called a primary cilium, but the standard Chlamydia cell culture infection model uses cycling cells that lack primary cilia. To investigate if these differences are relevant, we performed infections with host cells that have a primary cilium. We found that C. trachomatis caused progressive loss of the primary cilium that was prevented by disrupting Aurora A (AurA), HDAC6 or calmodulin, which are components of the cellular cilia disassembly pathway. Stabilization of the primary cilium by targeting this pathway caused a large reduction in infectious progeny although there were no changes in chlamydial inclusion growth, chlamydial replication or the ultrastructural appearance of dividing and infectious forms (RBs and EBs, respectively). Thus, the presence of a primary cilium interfered with the production of infectious EBs at a late step in the developmental cycle. C. trachomatis infection also induced quiescent cells to re-enter the cell cycle, as detected by EdU incorporation in S-phase, and Chlamydia-induced cilia disassembly was necessary for cell cycle re-entry. This study therefore describes a novel host-pathogen interaction in which the primary cilium limits a productive Chlamydia infection, and the bacterium counteracts this host cell defense by activating the cellular cilia disassembly pathway.


Subject(s)
Chlamydia Infections , Chlamydia trachomatis , Cilia , Chlamydia trachomatis/physiology , Cilia/microbiology , Cilia/metabolism , Chlamydia Infections/microbiology , Chlamydia Infections/metabolism , Chlamydia Infections/pathology , Humans , Epithelial Cells/microbiology , Epithelial Cells/metabolism
2.
Plants (Basel) ; 12(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37765388

ABSTRACT

Climate change may have important consequences on plant distribution because local environments could change faster than the pace of natural selection and adaptation of wild populations and cultivars of perennial forages. Temperature is a primary factor affecting seed germination and primary heterotrophic growth processes. Medicago sativa (L.) is the most important forage legumes globally. The accelerated breeding of alfalfa cultivars adapted to new ranges of temperature could be necessary under most future climate scenarios. This work aims to explore the genetic diversity of a sample of accessions for responses to temperature during seed germination and seedling heterotrophic growth. Seeds or seedlings were placed in the dark under eight constant temperatures in the range of 5 °C to 40 °C. Germinated seeds were manually counted, while hypocotyl and radicle growth were estimated by using image analysis and curve fitting. Multivariate analyses highlighted links between responses and the origin of accessions. Variability was high, within and between accessions, for all the response variables. Accessions showed significant differences in their non-linear response curves in terms of germinability, germination rates and relative elongation rates. Nevertheless, differences were more noticeable in germination rations and rates compared to seedling heterotrophic growth. Consequently, these could be easier to use as early markers for alfalfa selection and breeding for the future.

3.
Front Plant Sci ; 13: 856099, 2022.
Article in English | MEDLINE | ID: mdl-35463393

ABSTRACT

Lolium perenne (L.) is one of the most important species in temperate grasslands. Temperature is a major factor controlling plant development. Breeding L. perenne cultivars adapted to new ranges of temperature could be necessary under most climate change scenarios. However, before any breeding effort in such direction, knowing the intraspecific variability of responses to temperature is essential. Our objective was to analyze a sample of accessions of L. perenne for their response to constant temperature during germination and initial heterotrophic growth. Eight accessions were taken out from a genebank containing 160 accessions. Six accessions were wild populations collected in different places in France and the other two were populations from a selection program. For germination, four replicates of 100 seeds per accession were tested in Petri dishes in the dark at eight constant temperatures, from 5 to 40°C with increases of 5°C. Germination countings were carried out at variable time intervals and durations that depended on treatments. For initial heterotrophic growth analysis, seeds were germinated at 25°C. Sets of 30 seedlings per accession were placed in polypropylene boxes on blotter blue paper and transferred to each one of the eight treatments in the dark. They were pictured at variable time intervals for root and shoot growth measurement by image analysis. Neither seed germination nor heterotrophic growth was observed at 40°C, for any accession. Temperature and time course response surfaces were markedly different between accessions. Equally, maximum germinability and the shape of the response curves to temperature were significantly different between accessions. This means that limited similarities between responses were observed. Furthermore, germination rates followed the non-linear beta function with significant differences between some accessions. These also showed significant differences in their root and shoot growth rate in response to temperature. In general, the relative growth rates of roots and shoots were slow at 5°C, peaked between 25 and 30°C, and showed a sharp reduction afterward. These results reveal, for the first time, high genetic variability within L. perenne germplasm for the response to temperature in the initial life phases. This discovered variability should serve breeders to create perennial ryegrass varieties for the future.

4.
Front Plant Sci ; 12: 672156, 2021.
Article in English | MEDLINE | ID: mdl-34868095

ABSTRACT

In perennial grasses, the reproductive development consists of major phenological stages which highly determine the seasonal variations of grassland biomass production in terms of quantity and quality. The reproductive development is regulated by climatic conditions through complex interactions subjected to high genetic diversity. Understanding these interactions and their impact on plant development and growth is essential to optimize grassland management and identify the potential consequences of climate change. Here, we review the main stages of reproductive development, from floral induction to heading, i.e., spike emergence, considering the effect of the environmental conditions and the genetic diversity observed in perennial grasses. We first describe the determinants and consequences of reproductive development at individual tiller scale before examining the interactions between plant tillers and their impact on grassland perenniality. Then, we review the available grassland models through their ability to account for the complexity of reproductive development and genetic × environmental interactions. This review shows that (1) The reproductive development of perennial grasses is characterized by a large intraspecific diversity which has the same order of magnitude as the diversity observed between species or environmental conditions. (2) The reproductive development is determined by complex interactions between the processes of floral induction and morphogenesis of the tiller. (3) The perenniality of a plant is dependent on the reproductive behavior of each tiller. (4) Published models only partly explain the complex interactions between morphogenesis and climate on reproductive development. (5) Introducing more explicitly the underlying processes involved in reproductive development in models would improve our ability to anticipate grassland behavior in future growth conditions.

5.
Fish Physiol Biochem ; 47(4): 1257-1270, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34226987

ABSTRACT

The effect of fasting on spawning performance, maternal, and egg nutrient composition, and on embryo/larval development was monitored in gilthead seabream (Sparus aurata). Two broodstocks were fasted during two consecutive years, for a period of 43 and 54 days within the spawning season, in a preliminary (year 1, 5-year-old breeders) and the main study (year 2, 6-year-old breeders), respectively. Mean daily fecundity showed a declining trend during fasting in the main study only, while fertilization success was high in both years and it was not affected by fasting, as was hatching and 5-day larval survival. There was a loss of 23.5% of maternal body mass due to fasting, and a reduction in gonadosomatic and hepatosomatic indexes, as well as crude protein in maternal muscle and gonads, but not in the liver. After fasting, muscle Σω-6 PUFA and C18:3ω-3 were reduced while C20:4ω-6, 20:5ω-3/20:4ω-6, and C22:6ω-3/20:4ω-6 increased; in the liver, significant reductions were observed in C16:0, C18:3 ω-3, 20:5ω-3/C22:6ω-3 and increases in C18:0, C20:5ω-3, Σω-6 PUFA, and 20:5ω-3/20:4ω-6; in gonads, C15:0, ΣMUFA, 20:5ω-3/C22:6ω-3, 20:5ω-3/20:4ω-6 were increased, while C18:1ω-9 and C20:5ω-3 decreased. Contrary to maternal tissues, the energy density and proximate composition of the eggs did not change due to fasting. The study suggests that fasting of gilthead seabream breeders for 6-8 weeks during the spawning period does not affect spawning performance, egg proximate composition, or embryo and early larval development since maternal nutrient reserves are mobilized to maintain optimal egg nutrient composition.


Subject(s)
Fasting , Reproduction , Sea Bream/physiology , Animals , Embryo, Nonmammalian , Fatty Acids/analysis , Female , Larva , Ovum/chemistry
6.
J Exp Bot ; 72(7): 2642-2656, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33326568

ABSTRACT

Reduced blue light irradiance is known to enhance leaf elongation rate (LER) in grasses, but the mechanisms involved have not yet been elucidated. We investigated whether leaf elongation response to reduced blue light could be mediated by stomata-induced variations of plant transpiration. Two experiments were carried out on tall fescue in order to monitor LER and transpiration under reduced blue light irradiance. Additionally, LER dynamics were compared with those observed in the response to vapour pressure deficit (VPD)-induced variations of transpiration. Finally, we developed a model of water flow within a tiller to simulate the observed short-term response of LER to various transpiration regimes. LER dramatically increased in response to blue light reduction and then reached new steady states, which remained higher than the control. Reduced blue light triggered a simultaneous stomatal closure which induced an immediate decrease of leaf transpiration. The hydraulic model of leaf elongation accurately predicted the LER response to blue light and VPD, resulting from an increase in the growth-induced water potential gradient in the leaf growth zone. Our results suggest that the blue light signal is sensed by stomata of expanded leaves and transduced to the leaf growth zone through the hydraulic architecture of the tiller.


Subject(s)
Festuca , Plant Leaves , Plant Stomata , Plant Transpiration , Vapor Pressure , Water
7.
Front Plant Sci ; 12: 794488, 2021.
Article in English | MEDLINE | ID: mdl-35173750

ABSTRACT

Various adaptive mechanisms can ensure that seedlings are established at the most favourable time and place. These mechanisms include seed dormancy i.e., incapacity to germinate in any environment without a specific environmental trigger and inhibition i.e., incapacity to germinate in an unfavourable environment (water availability, temperature: thermoinhibition and light). The objective of this research was to study in the temperate range for germination of forage and turf grass species perennial ryegrass, if the thermal requirements for germination are under genetic controlled and could be selectively bred. Two divergent selections of three cycles were realized on a natural population: one to select for the capacity to germinate at 10°C vs. the impossibility to germinate at 10°C, and one to select for the capacity to germinate at 32°C vs. the impossibility to germinate at 32°C. Seeds of all the lots obtained from the two divergent selections were then germinated at constant temperatures from 5 to 35°C to evaluate their germination ability. Concerning the positive selection, the first cycle of positive selection at 10°C was highly efficient with a very strong increase in the germination percentage. However, afterward no selection effect was observed during the next two cycles of positive selection. By contrast, the positive selection at 32°C was efficient during all cycles with a linear increase of the percentage of germination at 32°C. Concerning the negative selection, we observed only a large positive effect of the first cycle of selection at 10°C. These findings demonstrate that seed thermoinhibition at 10 and 32°C observed in a natural population of perennial ryegrass has a genetic basis and a single recessive gene seems to be involved at 10°C.

8.
Front Plant Sci ; 12: 801145, 2021.
Article in English | MEDLINE | ID: mdl-35058960

ABSTRACT

Perennial ryegrass is an important forage crop in dairy farming, either for grazing or haying purposes. To further optimise the forage use, this study focused on understanding forage digestibility in the two most important cuts of perennial ryegrass, the spring cut at heading and the autumn cut. In a highly diverse collection of 592 Lolium perenne genotypes, the organic matter digestibility (OMD) and underlying traits such as cell wall digestibility (NDFD) and cell wall components (cellulose, hemicellulose, and lignin) were investigated for 2 years. A high genotype × season interaction was found for OMD and NDFD, indicating differences in genetic control of these forage quality traits in spring versus autumn. OMD could be explained by both the quantity of cell wall content (NDF) and the quality of the cell wall content (NDFD). The variability in NDFD in spring was mainly explained by differences in hemicellulose. A 1% increase of the hemicellulose content in the cell wall (HC.NDF) resulted in an increase of 0.81% of NDFD. In autumn, it was mainly explained by the lignin content in the cell wall (ADL.NDF). A 0.1% decrease of ADL.NDF resulted in an increase of 0.41% of NDFD. The seasonal traits were highly heritable and showed a higher variation in autumn versus spring, indicating the potential to select for forage quality in the autumn cut. In a candidate gene association mapping approach, in which 503 genes involved in cell wall biogenesis, plant architecture, and phytohormone biosynthesis and signalling, identified significant quantitative trait loci (QTLs) which could explain from 29 to 52% of the phenotypic variance in the forage quality traits OMD and NDFD, with small effects of each marker taken individually (ranging from 1 to 7%). No identical QTLs were identified between seasons, but within a season, some QTLs were in common between digestibility traits and cell wall composition traits confirming the importance of hemicellulose concentration for spring digestibility and lignin concentration in NDF for autumn digestibility.

9.
Mol Ecol Resour ; 21(3): 849-870, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33098268

ABSTRACT

Germplasm from perennial ryegrass (Lolium perenne L.) natural populations is useful for breeding because of its adaptation to a wide range of climates. Climate-adaptive genes can be detected from associations between genotype, phenotype and climate but an integrated framework for the analysis of these three sources of information is lacking. We used two approaches to identify adaptive loci in perennial ryegrass and their effect on phenotypic traits. First, we combined Genome-Environment Association (GEA) and GWAS analyses. Then, we implemented a new test based on a Canonical Correlation Analysis (CANCOR) to detect adaptive loci. Furthermore, we improved the previous perennial ryegrass gene set by de novo gene prediction and functional annotation of 39,967 genes. GEA-GWAS revealed eight outlier loci associated with both environmental variables and phenotypic traits. CANCOR retrieved 633 outlier loci associated with two climatic gradients, characterized by cold-dry winter versus mild-wet winter and long rainy season versus long summer, and pointed out traits putatively conferring adaptation at the extremes of these gradients. Our CANCOR test also revealed the presence of both polygenic and oligogenic climatic adaptations. Our gene annotation revealed that 374 of the CANCOR outlier loci were positioned within or close to a gene. Co-association networks of outlier loci revealed a potential utility of CANCOR for investigating the interaction of genes involved in polygenic adaptations. The CANCOR test provides an integrated framework to analyse adaptive genomic diversity and phenotypic responses to environmental selection pressures that could be used to facilitate the adaptation of plant species to climate change.


Subject(s)
Adaptation, Physiological/genetics , Climate , Genetic Loci , Lolium , Genotype , Lolium/genetics , Lolium/physiology , Multivariate Analysis , Phenotype , Plant Breeding
10.
Curr Biol ; 30(22): 4491-4499.e5, 2020 11 16.
Article in English | MEDLINE | ID: mdl-32946748

ABSTRACT

To ensure the faithful inheritance of DNA, a macromolecular protein complex called the kinetochore sustains the connection between chromosomes and force-generating dynamic microtubules during cell division. Defects in this process lead to aneuploidy, a common feature of cancer cells and the cause of many developmental diseases [1-4]. One of the major microtubule-binding activities in the kinetochore is mediated by the conserved Ndc80 complex (Ndc80c) [5-7]. In budding yeast, the retention of kinetochores on dynamic microtubule tips also depends on the essential heterodecameric Dam1 complex (Dam1c) [8-15], which binds to the Ndc80c and is proposed to be a functional ortholog of the metazoan Ska complex [16, 17]. The load-bearing activity of the Dam1c depends on its ability to oligomerize, and the purified complex spontaneously self-assembles into microtubule-encircling oligomeric rings, which are proposed to function as collars that allow kinetochores to processively track the plus-end tips of microtubules and harness the forces generated by disassembling microtubules [10-15, 18-22]. However, it is unknown whether there are specific regulatory events that promote Dam1c oligomerization to ensure accurate segregation. Here, we used a reconstitution system to discover that Cdk1, the major mitotic kinase that drives the cell cycle, phosphorylates the Ask1 component of the Dam1c to increase its residence time on microtubules and enhance kinetochore-microtubule attachment strength. We propose that Cdk1 activity promotes Dam1c oligomerization to ensure that kinetochore-microtubule attachments are stabilized as kinetochores come under tension in mitosis.


Subject(s)
CDC28 Protein Kinase, S cerevisiae/metabolism , Cell Cycle Proteins/metabolism , Kinetochores/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Chromosome Segregation , Enzyme Assays , Microtubule-Associated Proteins/genetics , Mitosis , Mutation , Phosphorylation/physiology , Protein Multimerization/physiology , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics
11.
Sensors (Basel) ; 20(16)2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32824579

ABSTRACT

Internet of Things (IoT) projects are increasing in size over time, and some of them are growing to reach the whole world. Sensor arrays are deployed world-wide and their data is sent to the cloud, making use of the Internet. These huge networks can be used to improve the quality of life of the humanity by continuously monitoring many useful indicators, like the health of the users, the air quality or the population movements. Nevertheless, in this scalable context, a percentage of the sensor data readings can fail due to several reasons like sensor reliabilities, network quality of service or extreme weather conditions, among others. Moreover, sensors are not homogeneously replaced and readings from some areas can be more precise than others. In order to address this problem, in this paper we propose to use collaborative filtering techniques to predict missing readings, by making use of the whole set of collected data from the IoT network. State of the art recommender systems methods have been chosen to accomplish this task, and two real sensor array datasets and a synthetic dataset have been used to test this idea. Experiments have been carried out varying the percentage of failed sensors. Results show a good level of prediction accuracy which, as expected, decreases as the failure rate increases. Results also point out a failure rate threshold below which is better to make use of memory-based approaches, and above which is better to choose model-based methods.

12.
Ann Bot ; 126(4): 671-685, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32004372

ABSTRACT

BACKGROUNDS AND AIMS: A major challenge when supporting the development of intercropping systems remains the design of efficient species mixtures. The ecological processes that sustain overyielding of legume-based mixtures compared to pure crops are well known, but their links to plant traits remain to be unravelled. A common assumption is that enhancing trait divergence among species for resource acquisition when assembling plant mixtures should increase species complementarity and improve community performance. METHODS: The Virtual Grassland model was used to assess how divergence in trait values between species on four physiological functions (namely light and mineral N acquisition, temporal development, and C-N use efficiency) affected overyielding and mixture stability in legume-based binary mixtures. A first step allowed us to identify the model parameters that were most important to interspecies competition. A second step involved testing the impact of convergent and divergent parameter (or trait) values between species on virtual mixture performance. RESULTS: Maximal overyielding was achieved in cases where trait values were divergent for the physiological functions controlling N acquisition and temporal development but convergent for light interception. It was also found that trait divergence should not affect competitive abilities of legume and non-legumes at random. Indeed, random trait combinations frequently led to reduced mixture yields when compared to a perfectly convergent neutral model. Combinations with the highest overyielding also tended to be associated with mixture instability and decreasing legume biomass proportion. Achieving both high overyielding and mixture stability was only found to be possible under low or moderate N levels, using combinations of traits adapted to each environment. CONCLUSIONS: No simple assembly rule based on trait divergence could be confirmed. Plant models able to infer plant-plant interactions can be helpful for the identification of major interaction traits and the definition of ideotypes adapted to a targeted intercropping system.


Subject(s)
Fabaceae/genetics , Biodiversity , Biomass , Phenotype
13.
Front Plant Sci ; 11: 578121, 2020.
Article in English | MEDLINE | ID: mdl-33552093

ABSTRACT

Lucerne (Medicago sativa), a major perennial pasture legume, belongs to a species complex that includes several subspecies with wild and cultivated populations. Stand establishment may be compromised by poor germination. Seed scarification, deterioration and temperature have an impact on germination. The objective of this study was to analyse the genetic diversity of lucerne germination in response to three factors: (1) temperature, with seven constant temperatures ranging from 5 to 40°C, was tested on 38 accessions, (2) seed scarification was tested on the same accessions at 5 and 22°C, (3) seed deterioration was tested on two accessions and two seed lots at the seven temperatures. The germination dynamics of seed lots over time was modelled and three parameters were analysed: germinability (germination capacity), maximum germination rate (maximum% of seeds germinating per time unit), and lag time before the first seed germinates. Seed scarification enhanced germinability at both temperatures and its effect was much higher on falcata and wild sativa accessions. Incomplete loss of the hardseededness trait during domestication and selection is hypothesised, indicating that the introduction of wild material in breeding programmes should be followed by the selection for germinability without scarification. Seed lots with altered germinability had low germination at extreme temperatures, both cold and hot, suggesting that mild temperatures are required to promote germination of damaged seed lots. A large genetic diversity was revealed for germination (both capacity and rate) in response to temperature. All accessions had an optimal germination at 15 or 22°C and a poor germination at 40°C. The sativa varieties and landraces had a high germination from 5 to 34°C while the germination of falcata and the wild sativa accessions were weakened at 5 or 34°C, respectively. These differences are interpreted in terms of adaptation to the climate of their geographical origin regions in order to escape frost or heat/drought risks. These new findings give insights on adaptation and domestication of lucerne in its wide geographic area. They suggest further improvement of germination is needed, especially when introducing wild material in breeding pools to remove scarification requirements and to limit differences in response to temperature.

14.
Environ Int ; 129: 423-429, 2019 08.
Article in English | MEDLINE | ID: mdl-31152983

ABSTRACT

The European Food Safety Authority concluded in February 2018 that "most uses of neonicotinoid insecticides represent a risk to wild bees and honeybees". In 2016, the French government passed a law banning the use of the five neonicotinoids previously authorized: clothianidin, imidacloprid, thiamethoxam, acetamiprid and thiacloprid. In the framework of an expert assessment conducted by the French Agency for Food, Environmental and Occupational Health and Safety to identify possible derogations, we performed a thorough assessment of the available alternatives to the five banned neonicotinoids. For each pest targeted by neonicotinoids use, we identified the main alternative pest management methods, which we then ranked for (i) efficacy for controlling the target pest, (ii) applicability (whether directly useable by farmers or in need of further research and development), (iii) durability (risk of resistance in targeted pests), and (iv) practicability (ease of implementation by farmers). We identified 152 authorized uses of neonicotinoids in France, encompassing 120 crops and 279 pest insect species (or genera). An effective alternative to neonicotinoids use was available in 96% of the 2968 case studies analyzed from the literature (single combinations of one alternative pest control method or product × one target crop plant × one target pest insect). The most common alternative to neonicotinoids (89% of cases) was the use of another chemical insecticide (mostly pyrethroids). However, in 78% of cases, at least one non-chemical alternative method could replace neonicotinoids (e.g. microorganisms, semiochemicals or surface coating). The relevance of non-chemical alternatives to neonicotinoids depends on pest feeding habits. Leaf and flower feeders are easier to control with non-chemical methods, whereas wood and root feeders are more difficult to manage by such methods. We also found that further field studies were required for many promising non-chemical methods before their introduction into routine use by farmers. Our findings, transmitted to policymakers, indicate that non-chemical alternatives to neonicotinoids do exist. Furthermore, they highlight the need to promote these methods through regulation and funding, with a view to reducing pesticide use in agriculture.


Subject(s)
Insect Control/methods , Insecticides/pharmacology , Insecticides/toxicity , Neonicotinoids/chemistry , Neonicotinoids/pharmacology , Agriculture/methods , Animals , Crops, Agricultural , France , Insect Control/legislation & jurisprudence , Insecta/drug effects
15.
Chemphyschem ; 20(18): 2286-2291, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31132206

ABSTRACT

Covalent networks formed by on-surface synthesis usually suffer from the presence of a large number of defects. We report on a methodology to characterize such two-dimensional networks from their experimental images obtained by scanning probe microscopy. The computation is based on a persistent homology approach and provides a quantitative score indicative of the network homogeneity. We compare our scoring method with results previously obtained using minimal spanning tree analyses and we apply it to some molecular systems appearing in the existing literature.

16.
J Exp Bot ; 70(9): 2491-2504, 2019 04 29.
Article in English | MEDLINE | ID: mdl-30219923

ABSTRACT

Functional-structural plant models are increasingly being used to analyse relationships between plant functioning and the topological and spatial organisation of their modular structure. In this study, the performance of an individual-based model accounting for the the architecture and population dynamics of forage legumes in multi-species grasslands was assessed. Morphogenetic shoot and root parameters were calibrated for seven widely used species. Other model parameters concerning C and N metabolism were obtained from the literature. The model was evaluated using a series of independent experiments combining the seven species in binary mixtures that were subject to regular defoliation. For all the species, the model could accurately simulate phytomer demography, leaf area dynamics, and root growth under conditions of weak competition. In addition, the plastic changes induced by competition for light and N in terms of plant development, leaf area, N uptake, and total plant biomass were correctly predicted. The different species displayed contrasting sensitivities to defoliation, and the model was able to predict the superior ability of creeping species to sustain regular defoliation. As a result of competition and management, the balance between species changed over time and was strongly dependent on the pair of species used. The model proved able to capture these differences in community dynamics. Overall, the results demonstrate that integrating the individual components of population dynamics in a process-based model can provide good predictive capacity regarding mixtures of cultivated species.


Subject(s)
Grassland , Nitrogen/metabolism , Biodiversity , Fabaceae/metabolism , Plant Development/physiology , Population Dynamics
17.
J Exp Bot ; 69(16): 3975-3986, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29931373

ABSTRACT

In grassland plant communities, the ability of individual plants to regrow after defoliation is of crucial importance since it allows the restoration of active photosynthesis and plant growth. The aim of this study was to evaluate the effects of increasing defoliation intensity (0, 25, 65, 84, and 100% of removed leaf area) on sugar remobilization and N uptake, remobilization, and allocation in roots, adult leaves, and growing leaves of ryegrass over 2 days, using a 15N tracer technique. Increasing defoliation intensity decreased plant N uptake in a correlative way and increased plant N remobilization, but independently. The relative contribution of N stored before defoliation to leaf growth increased when defoliation intensity was severe. In most conditions, root N reserves also contributed to leaf regrowth, but much less than adult leaves and irrespective of defoliation intensity. A threshold of defoliation intensity (65% leaf area removal) was identified below which C (glucose, fructose, sucrose, fructans), and N (amino acids, soluble proteins) storage compounds were not recruited for regrowth. By contrast, nitrate content increased in elongating leaf bases above this threshold. Wounding associated with defoliation is thus not the predominant signal that triggers storage remobilization and controls the priority of resource allocation to leaf meristems. A framework integrating the sequential events leading to the refoliation of grasses is proposed on the basis of current knowledge and on the findings of the present work.


Subject(s)
Carbohydrate Metabolism , Lolium/metabolism , Nitrogen/metabolism , Plant Leaves/metabolism , Lolium/growth & development , Plant Leaves/growth & development , Plant Roots/growth & development
18.
Front Plant Sci ; 8: 405, 2017.
Article in English | MEDLINE | ID: mdl-28396676

ABSTRACT

A great variety of legume species are used for forage production and grown in multi-species grasslands. Despite their close phylogenetic relationship, they display a broad range of morphologies that markedly affect their competitive abilities and persistence in mixtures. Little is yet known about the component traits that control the deployment of plant architecture in most of these species. During the present study, we compared the patterns of shoot organogenesis and shoot organ growth in contrasting forage species belonging to the four morphogenetic groups previously identified in herbaceous legumes (i.e., stolon-formers, rhizome-formers, crown-formers tolerant to defoliation and crown-formers intolerant to defoliation). To achieve this, three greenhouse experiments were carried out using plant species from each group (namely alfalfa, birdsfoot trefoil, sainfoin, kura clover, red clover, and white clover) which were grown at low density under non-limiting water and soil nutrient availability. The potential morphogenesis of shoots characterized under these conditions showed that all the species shared a number of common morphogenetic features. All complied with a generalized classification of shoot axes into three types (main axis, primary and secondary axes). A common quantitative framework for vegetative growth and development involved: (i) the regular development of all shoot axes in thermal time and a deterministic branching pattern in the absence of stress; (ii) a temporal coordination of organ growth at the phytomer level that was highly conserved irrespective of phytomer position, and (iii) an identical allometry determining the surface area of all the leaves. The species differed in their architecture as a consequence of the values taken by component traits of morphogenesis. Assessing the relationships between the traits studied showed that these species were distinct from each other along two main PCA axes which explained 68% of total variance: the first axis captured a trade-off between maximum leaf size and the ability to produce numerous phytomers, while the second distinguished morphogenetic strategies reliant on either petiole or internode expansion to achieve space colonization. The consequences of this quantitative framework are discussed, along with its possible applications regarding plant phenotyping and modeling.

19.
Rev. esp. enferm. dig ; 108(12): 835-837, dic. 2016. ilus
Article in English | IBECS | ID: ibc-159640

ABSTRACT

Compression of the esophagus by a retroesophageal aberrant right subclavian artery (ARSA) is a rare cause of dysphagia. We present the case of a 47-year-old female with symptoms of progressive dysphagia diagnosed with dysphagia lusoria using barium swallow and contrast computed tomography and successfully treated with a hybrid procedure: right carotid to subclavian bypass and endovascular insertion of an Amplatzer II Vascular Plug through the right superficial femoral artery. We consider this approach safer, less invasive and more complete to avoid recurrent dysphagia (AU)


No disponible


Subject(s)
Humans , Female , Deglutition Disorders/complications , Deglutition Disorders/surgery , Deglutition Disorders , Subclavian Artery/pathology , Subclavian Artery , Esophagus/pathology , Esophagus , Subclavian Artery/physiopathology , Subclavian Artery/surgery , Angiography/instrumentation , Angiography/methods , Magnetic Resonance Imaging/methods , Tomography, Emission-Computed/instrumentation , Tomography, Emission-Computed/methods
20.
Rev Esp Enferm Dig ; 108(12): 0, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26901624

ABSTRACT

Compression of the esophagus by a retroesophageal aberrant right subclavian artery (ARSA) is a rare cause of dysphagia. We present the case of a 47-year-old female with symptoms of progressive dysphagia diagnosed with dysphagia lusoria using barium swallow and contrast computed tomography and successfully treated with a hybrid procedure: right carotid to subclavian bypass and endovascular insertion of an Amplatzer II Vascular Plug through the right superficial femoral artery. We consider this approach safer, less invasive and more complete to avoid recurrent dysphagia.


Subject(s)
Carotid Arteries/surgery , Deglutition Disorders/therapy , Endovascular Procedures/methods , Aneurysm , Angiography, Digital Subtraction , Cardiovascular Abnormalities , Carotid Arteries/diagnostic imaging , Deglutition Disorders/etiology , Deglutition Disorders/surgery , Esophageal Diseases/diagnostic imaging , Esophageal Diseases/etiology , Esophageal Diseases/surgery , Female , Humans , Middle Aged , Subclavian Artery/abnormalities , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...