Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37509873

ABSTRACT

Bread is a widely consumed food that has often been used as a vehicle for functional ingredients such as dietary fibre. Fibre-rich breads have beneficial physiological effects on health, helping to combat chronic pathologies such as cardiovascular disease, diabetes, and certain types of colon cancer. The aim of this study is to evaluate the technological and nutritional effects of the inclusion of buckwheat hull particles (BH) at two addition levels (3 and 6%) and two particle sizes (fine, D50: 62.7 µm; coarse, D50: 307 µm) in a gluten-free (GF) bread formulation. A significant (p < 0.05) increase in the dough elastic modulus (G') was observed for all doughs containing BH, from 712 Pa for a rice-based dough to 1027-3738 Pa for those containing BH. Compared to rice-based breads, those containing BH showed a significant (p < 0.05) increase in total dietary fibre content (from three to five times) and in antioxidant capacity (from 78 to 290 mg TE/100 g dw. in the ORAC test). Breads containing fine BH at a level of 3% had similar sensory properties to the rice-based bread, demonstrating that it is possible to improve the TDF content while maintaining the sensory quality of the GF bread.

2.
Foods ; 13(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38201159

ABSTRACT

The current trend in the food industry is towards "clean label" products with high sensory and nutritional quality. However, the inclusion of nutrient-rich ingredients in recipes often leads to sensory deficiencies in baked goods. To meet these requirements, physically modified flours are receiving more and more attention from bakery product developers. There are various findings in the literature on high hydrostatic pressure (HHP) technology, which can be used to modify various matrices so that they can be used as ingredients in the baking industry. HHP treatments can change the functionality of starches and proteins due to cold gelatinization and protein unfolding. As a result, the resulting ingredients are more suitable for nutrient-rich bakery formulations. This review describes the information available in the literature on HHP treatment conditions for ingredients used in the production of bakery products and analyses the changes in the techno-functional properties of these matrices, in particular their ability to act as structuring agents. The impact of HHP-treated ingredients on the quality of dough and bakery products and the effects on some nutritional properties of the treated matrices have been also analysed. The findings presented in this paper could be of particular interest to the bakery industry as they could be very useful in promoting the industrial application of HHP technology.

3.
Foods ; 9(6)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545426

ABSTRACT

The study evaluated the effect of autoclaving as a hydrothermal treatment on the quality and bioactivity of wheat bran (WB) with the objective of producing a natural ingredient with enhanced healthy properties. Nutritional, antioxidant, techno-functional and sensorial parameters were studied, and temperatures of 100, 115 and 130 °C were explored. Of these, 130 °C was found to be the best treatment, resulting in an ingredient with high storage stability, antioxidant properties, a four-fold increase in the concentration of free ferulic acid (compared with non-treated WB), and increased content of apigenin-6-C-arabinoside-8-C-hexoside, a flavonoid with reported antioxidant and antifungal properties. On the other hand, the autoclave treatment enhanced water absorption capacity and reduced WB pasting viscosity, mainly at higher temperature (130 °C), which would allow incorporation of the treated WB in liquid matrices such as juices, soups or milkshakes, among others. Although the glycemic index (GI) of the autoclaved samples increased, the use of intermediate particle size of 106 to 300 µm could contribute to the reduction of the glycemic load.

SELECTION OF CITATIONS
SEARCH DETAIL
...