Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mil Med ; 185(Suppl 1): 554-561, 2020 01 07.
Article in English | MEDLINE | ID: mdl-32074351

ABSTRACT

INTRODUCTION: Gulf War Illness (GWI) currently has no known cure and affects soldiers deployed during the Persian Gulf War. It is thought to originate from exposure to neurotoxicants combined with battlefield stress, and previous research indicates that treatment first involves inhibition of interleukin-2 and tumor necrosis factor alpha, followed by the glucocorticoid receptor. However, the off-target effects of pharmaceuticals hinder development of a drug treatment therapy. MATERIALS AND METHODS: AutoDock 4.2, AutoDock Vina, and Schrodinger's Glide were used to perform consensus docking, a computational technique where pharmaceuticals are screened against targets using multiple scoring algorithms to obtain consistent binding affinities. FDA approved pharmaceuticals were docked against the above-mentioned immune and stress targets to determine a drug therapy for GWI. Additionally, the androgen and estrogen targets were screened to avoid pharmaceuticals with off-target interactions. RESULTS: While suramin bound to both immune targets with high affinity, top binders of the hormonal and glucocorticoid targets were non-specific towards their respective proteins, possibly due to high structure similarity between these proteins. CONCLUSIONS: Development of a drug treatment therapy for GWI is threatened by the tight interplay between the immune and hormonal systems, often leading to drug interactions. Increasing knowledge of these interactions can lead to break-through therapies.


Subject(s)
Consensus , Lymphokines/therapeutic use , Persian Gulf Syndrome/drug therapy , Tumor Necrosis Factor Inhibitors/therapeutic use , Humans
2.
Int J Mol Sci ; 19(11)2018 Oct 26.
Article in English | MEDLINE | ID: mdl-30373189

ABSTRACT

Gulf War Illness (GWI) is a chronic multisymptom illness characterized by fatigue, musculoskeletal pain, and gastrointestinal and cognitive dysfunction believed to stem from chemical exposures during the 1990⁻1991 Persian Gulf War. There are currently no treatments; however, previous studies have predicted a putative multi-intervention treatment composed of inhibiting Th1 immune cytokines followed by inhibition of the glucocorticoid receptor (GCR) to treat GWI. These predictions suggest the use of specific monoclonal antibodies or suramin to target interleukin-2 and tumor necrosis factor α , followed by mifepristone to inhibit the GCR. In addition to this putative treatment strategy, there exist a variety of medications that target GWI symptomatology. As pharmaceuticals are promiscuous molecules, binding to multiple sites beyond their intended targets, leading to off-target interactions, it is key to ensure that none of these medications interfere with the proposed treatment avenue. Here, we used the drug docking programs AutoDock 4.2, AutoDock Vina, and Schrödinger's Glide to assess the potential off-target immune and hormone interactions of 43 FDA-approved drugs commonly used to treat GWI symptoms in order to determine their putative polypharmacology and minimize adverse drug effects in a combined pharmaceutical treatment. Several of these FDA-approved drugs were predicted to be novel binders of immune and hormonal targets, suggesting caution for their use in the proposed GWI treatment strategy symptoms.


Subject(s)
Cognitive Dysfunction/drug therapy , Drug-Related Side Effects and Adverse Reactions/etiology , Fatigue Syndrome, Chronic/drug therapy , Gastrointestinal Diseases/drug therapy , Musculoskeletal Pain/drug therapy , Polypharmacology , Cognitive Dysfunction/complications , Cognitive Dysfunction/metabolism , Drug-Related Side Effects and Adverse Reactions/metabolism , Fatigue Syndrome, Chronic/complications , Fatigue Syndrome, Chronic/metabolism , Gastrointestinal Diseases/complications , Gastrointestinal Diseases/metabolism , Gulf War , Humans , Molecular Docking Simulation , Molecular Targeted Therapy/methods , Musculoskeletal Pain/complications , Musculoskeletal Pain/metabolism , Software
3.
Br J Pharmacol ; 175(21): 4183-4192, 2018 11.
Article in English | MEDLINE | ID: mdl-30125963

ABSTRACT

BACKGROUND AND PURPOSE: The polyphenol resveratrol (RSV) exists in high quantities in certain foods (e.g. grapes and nuts). However, the capacity of RSV to confer physiological health benefits and a biological mechanism through which this might occur remains unclear. EXPERIMENTAL APPROACH: Aged, RSV-treated (300 mg·kg-1 ·day-1 ) and genetically modified [endothelial NOS (eNOS-/- )] female mice were assessed using histomorphometric and µCT analysis. Alongside in vivo analysis, molecular siRNA knockdown and pharmacological manipulation of eNOS, BMP2 and sirtuin 1 (SIRT1) and functional cellular assays in an osteoblast cell line panel, explored the mechanism through which RSV might impact overall bone volume. KEY RESULTS: RSV promoted osteoblast activity and bone growth in vivo. RSV dose-dependently and simultaneously increased alkaline phosphatase (ALP) and eNOS levels. Similarly, NO-donor treatment increased ALP, runt homology transcription factor 2, BMP2 and stimulated bone formation, whilst eNOS-deficient mice displayed a bone loss phenotype. Moreover, RSV-induced increase in ALP and BMP2 expression was blocked in eNOS-/- osteoblasts and by BMP-inhibitor noggin. The longevity-linked SIRT1 enzyme was positively regulated by RSV and SIRT1 deletion reduced eNOS, BMP2 and ALP. Like eNOS deletion, loss of SIRT1 blocked RSV-induced osteoblast activity; however, SIRT1 levels remained unchanged in eNOS-/- mice, indicating RSV activation of SIRT1 stimulates BMP2 release via eNOS. This signalling axis is supported by decreased SIRT1, eNOS and BMP2 confirmed in old versus young bone. CONCLUSIONS AND IMPLICATIONS: These findings suggest a new mechanism of action in bone remodelling and the ageing skeleton, where RSV positively impacts bone homeostasis via SIRT1 activation of BMP2.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Bone Morphogenetic Protein 2/metabolism , Bone and Bones/drug effects , Osteoblasts/drug effects , Resveratrol/pharmacology , Sirtuin 1/metabolism , Animals , Cells, Cultured , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase Type III/deficiency , Nitric Oxide Synthase Type III/metabolism , Osteoblasts/metabolism , Sirtuin 1/deficiency
4.
Aging Cell ; 16(5): 1125-1135, 2017 10.
Article in English | MEDLINE | ID: mdl-28772063

ABSTRACT

The dietary intake of ω-3 polyunsaturated fatty acids has been linked to a reduction in the incidence of aging-associated disease including cardiovascular disease and stroke. Additionally, long-lived Caenorhabditis elegans glp-1 germ line-less mutant animals show a number of changes in lipid metabolism including the increased production of the ω-3 fatty acid, α-linolenic acid (ALA). Here, we show that the treatment of C. elegans with ALA produces a dose-dependent increase in lifespan. The increased longevity of the glp-1 mutant animals is known to be dependent on both the NHR-49/PPARα and SKN-1/Nrf2 transcription factors, although the mechanisms involved are incompletely understood. We find that ALA treatment increased the lifespan of wild-type worms and that these effects required both of these transcription factors. Specifically, NHR-49 was activated by ALA to promote the expression of genes involved in the ß-oxidation of lipids, whereas SKN-1 is not directly activated by ALA, but instead, the exposure of ALA to air results in the oxidation of ALA to a group of compounds termed oxylipins. At least one of the oxylipins activates SKN-1 and enhances the increased longevity resulting from ALA treatment. The results show that ω-3 fatty acids inhibit aging and that these effects could reflect the combined effects of the ω-3 fatty acid and the oxylipin metabolites. The benefits of ω-3 fatty acid consumption on human health may similarly involve the production of oxylipins, and differences in oxylipin conversion could account for at least part of the variability found between observational vs. interventional clinical trials.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/drug effects , Longevity/drug effects , Oxylipins/metabolism , PPAR alpha/genetics , Receptors, Cytoplasmic and Nuclear/genetics , alpha-Linolenic Acid/pharmacology , Animals , Biotransformation , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dose-Response Relationship, Drug , Gene Expression Regulation, Developmental , Lipid Metabolism , Longevity/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction , PPAR alpha/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , alpha-Linolenic Acid/metabolism
5.
J Orthop Res ; 33(8): 1197-204, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25683968

ABSTRACT

The ubiquitin/proteasome system plays an important role in regulating the activity of osteoblast precursor cells. Proteasome inhibitors (PSIs) have been shown to stimulate the differentiation of osteoblast precursor cells and to promote bone formation. This raises the possibility that PSIs might be useful for enhancing fracture healing. In this study, we examined the effect of the local administration of PSI on fracture repair in rats. The effects of treatment on the healing of a fractured femur were assessed based on radiographs, micro-computed tomography (µCT) analysis, biomechanical testing, and histological analysis. PSI enhanced osteogenic differentiation in bone marrow- and periosteum-derived mesenchymal progenitor cells in vitro. Moreover, the local administration of PSI in vivo promoted fracture healing in rats, as demonstrated by an increased fracture callus volume in radiographs at 2 weeks post-fracture, and improved radiographic scores. By week 4, PSI treatment had enhanced biomechanical strength and mineral density in the callus as assessed using bending tests, and µCT, respectively. Histological sections demonstrated that PSI treatment accelerated endochondral ossification during the early stages of fracture repair. Although further investigations are necessary to assess its clinical use, the local administration of PSIs might be a novel, and effective therapeutic approach for fracture repair.


Subject(s)
Fracture Healing/drug effects , Proteasome Inhibitors/pharmacology , Animals , Biomechanical Phenomena , Bone Morphogenetic Protein 2/analysis , Cell Differentiation/drug effects , Femoral Fractures/physiopathology , Male , Osteogenesis/drug effects , Rats , Rats, Sprague-Dawley , Stem Cells/cytology , Stem Cells/drug effects , Tomography, X-Ray Computed
6.
J Nutr Sci ; 3: e13, 2014.
Article in English | MEDLINE | ID: mdl-25191605

ABSTRACT

Using a sequential in vitro/in vivo approach, we tested the ability of botanical extracts to influence biomarkers associated with bone resorption and bone formation. Pomegranate fruit and grape seed extracts were found to exhibit anti-resorptive activity by inhibiting receptor activator of nuclear factor-κB ligand (RANKL) expression in MG-63 cells and to reduce IL-1ß-stimulated calvarial (45)Ca loss. A combination of pomegranate fruit and grape seed extracts were shown to be effective at inhibiting bone loss in ovariectomised rats as demonstrated by standard histomorphometry, biomechanical and bone mineral density measurements. Quercetin and licorice extract exhibited bone formation activity as measured by bone morphogenetic protein-2 (BMP-2) promoter activation, increased expression of BMP-2 mRNA and protein levels, and promotion of bone growth in cultured mouse calvariae. A combination of quercetin and licorice extract demonstrated a potential for increasing bone mineral density in an intact female rat model as compared with controls. The results from this sequential in vitro/in vivo research model yielded botanical extract formulas that demonstrate significant potential benefits for bone health.

7.
Tissue Eng Part A ; 16(7): 2369-79, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20205517

ABSTRACT

Scaffolds prepared from biodegradable polyurethanes (PUR) have been investigated as a supportive matrix and delivery system for skin, cardiovascular, and bone tissue engineering. In this study, we combined reactive two-component PUR scaffolds with lovastatin (LV), which has been reported to have a bone anabolic effect especially when delivered locally, for effective bone tissue regeneration. To incorporate LV into PUR scaffolds, LV was combined with the hardener component before scaffold synthesis. The PUR scaffolds containing LV (PUR/LV) demonstrated a highly porous structure with interconnected pores, which supported in vitro cell attachment and proliferation and in vivo osteoconductive potential. The PUR/LV scaffolds showed sustained release of biologically active LV, as evidenced by the fact that LV releasates significantly enhanced osteogenic differentiation of osteoblastic cells in vitro. A study of bone formation in vivo using a rat plug defect model showed that the PUR/LV scaffolds were biocompatible. Further, locally delivered LV enhanced new bone formation in the PUR scaffolds at week 4, while there were no obvious effects at week 2. These results suggest that the sustained LV delivery system from PUR scaffolds is a potentially safe and effective device for bone regeneration.


Subject(s)
Biocompatible Materials/pharmacology , Bone Regeneration/drug effects , Elastomers/pharmacology , Lovastatin/pharmacology , Polyurethanes/pharmacology , Tissue Scaffolds/chemistry , Animals , Bone and Bones/cytology , Bone and Bones/drug effects , Cell Differentiation/drug effects , Delayed-Action Preparations , Kinetics , Male , Mice , Microscopy, Electron, Scanning , Osteogenesis/drug effects , Rats , Rats, Sprague-Dawley
8.
J Biomech ; 42(7): 891-7, 2009 May 11.
Article in English | MEDLINE | ID: mdl-19281987

ABSTRACT

Although fracture healing is frequently studied in pre-clinical models of long bone fractures using rodents, there is a dearth of objective quantitative techniques to assess successful healing. Biomechanical testing is possibly the most quantitative and relevant to a successful clinical outcome, but it is a destructive technique providing little insight into the cellular mechanisms associated with healing. The advent of X-ray computed tomography (CT) has provided the opportunity to quantitatively and non-destructively assess bone structure and density, but it is unknown how measurements derived using this technology relate to successful healing. To examine possible relationships, we used a pre-clinical model to test for statistically significant correlations between quantitative characteristics of the callus by micro-CT (microCT) and the bending strength, stiffness, and energy-to-failure of the callus as assessed by three-point bending of excised bones. A closed, transverse fracture was generated in the mid-shaft of rat femurs by impact loading. Shortly thereafter, the rats received a one-time, local injection of either the vehicle or one of four doses of lovastatin. Following sacrifice after 4 weeks of healing, fractured femurs were extracted for microCT analysis and then three-point bending. Setting the region of interest to be 3.2 mm above and below the fracture line, we acquired standard and new microCT-derived measurements. The mineralized callus volume and the mineral density of the callus correlated positively with callus strength (rxy = -0.315, p = 0.016 and rxy = 0.444, p<0.0005, respectively) and stiffness (rxy = -0.271, p = 0.040 and rxy = 0.325, p = 0.013, respectively), but the fraction of the callus that mineralized and the moment of inertia of the callus did not. This fraction did correlate with energy-to-failure (rxy = -0.343, p = 0.0085). Of the microCT-derived measurements, quantifying defects within the outer bridging cortices of the callus produced the strongest correlation with both callus strength (rxy = 0.557, p<0.0001) and stiffness (rxy = 0.468, p = 0.0002). By both reducing structural defects and increasing mineralization, lovastatin appears to increase the callus strength.


Subject(s)
Femoral Fractures/diagnostic imaging , Femoral Fractures/physiopathology , Animals , Femoral Fractures/drug therapy , Fracture Healing/drug effects , Lovastatin/therapeutic use , Male , Rats , Rats, Sprague-Dawley , X-Ray Microtomography
9.
J Bone Miner Res ; 23(11): 1722-30, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18597639

ABSTRACT

Statins have been shown to stimulate BMP2 transcription and bone formation. This raises the possibility that they could be useful for enhancing rates of fracture repair. Observational studies in patients treated with oral statins for lipid-lowering have been controversial. The likely reason for their inconsistent effects is that the statin concentration reaching the periphery was too low after oral administration to produce a reproducible biologic effect. Thus, we examined the effects of lovastatin (LV) given transdermally in a well-described preclinical model of fracture repair. Effects on the healing fracture callus were assessed by biomechanical strength, radiographs, and quantitative morphology. LV was administered transdermally (TD) for 5 days after fracture in several doses (0.1-5 mg/kg/d) and compared with vehicle-treated control rats and rats treated with LV by oral gavage (PO) at 5-25 mg/kg/d for 5 days from the day of fracture. Radiological evaluation of bones treated with TD LV showed enhanced fracture repair at 2 and 6 wk. BMD in the callus area at 6 wk was also increased in the TD group compared with vehicle-treated controls (p < 0.05). The force required to break TD-treated bones (0.1 mg/kg/d for 5 days) was 42% greater than vehicle-treated controls (p < 0.02), and there was a 90% increase in stiffness (p < 0.01). PO LV at much higher doses (10 and 25 mg/kg/d) showed increased stiffness but no change in other biomechanical properties. By histological examination, a significant increase was also observed in the size of the callus, surrounding proliferating cell nuclear antigen-positive cells, and osteoblast and osteoclast number in TD-treated rats compared with controls at day 8 after fracture (n = 6). In summary, we found that TD LV in low doses accelerates fracture healing, whereas 10-fold the lipid-lowering dose was required to produce any effect when it was administered orally. These studies provide valuable information on the potential of statins and TD delivery as a new and effective therapeutic modality in fracture repair.


Subject(s)
Fracture Healing/drug effects , Lovastatin/administration & dosage , Lovastatin/pharmacology , Administration, Cutaneous , Animals , Biomechanical Phenomena , Bone Density/drug effects , Female , Femoral Fractures/diagnostic imaging , Femoral Fractures/pathology , Radiography , Rats , Rats, Sprague-Dawley
10.
Bone ; 36(1): 33-46, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15664000

ABSTRACT

Matrix Extracellular Phospho-glycoprotEin (MEPE) and proteases are elevated and PHEX is defective in HYP. PHEX prevents proteolysis of MEPE and release of a protease-resistant MEPE-ASARM peptide, an inhibitor of mineralization (minhibin). Thus, in HYP, mutated PHEX may contribute to increased ASARM peptide release. Moreover, binding of MEPE by PHEX may regulate this process in normal subjects. The nature of the PHEX-MEPE nonproteolytic interaction(s) (direct or indirect) is/are unknown. Our aims were to determine (1) whether PHEX binds specifically to MEPE, (2) whether the binding involves the ASARM motif region, and (3) whether free ASARM peptide affects mineralization in vivo in mice. Protein interactions between MEPE and recombinant soluble PHEX (secPHEX) were measured using surface plasmon resonance (SPR). Briefly, secPHEX, MEPE, and control protein (IgG) were immobilized on a Biacore CM5 sensor chip, and SPR experiments were performed on a Biacore 3000 high-performance research system. Pure secPHEX was then injected at different concentrations, and interactions with immobilized proteins were measured. To determine MEPE sequences interacting with secPHEX, the inhibitory effects of MEPE-ASARM peptides (phosphorylated and nonphosphorylated), control peptides, and MEPE midregion RGD peptides on secPHEX binding to chip-immobilized MEPE were measured. ASARM peptide and etidronate-mediated mineralization inhibition in vivo and in vitro were determined by quenched calcein fluorescence in hind limbs and calvariae in mice and by histological Sanderson stain. A specific, dose-dependent and Zn-dependent protein interaction between secPHEX and immobilized MEPE occurs (EC50 of 553 nM). Synthetic MEPE PO4-ASARM peptide inhibits the PHEX-MEPE interaction (K(D(app)) = 15 uM and B(max/inhib) = 68%). In contrast, control and MEPE-RGD peptides had no effect. Subcutaneous administration of ASARM peptide resulted in marked quenching of fluorescence in calvariae and hind limbs relative to vehicle controls indicating impaired mineralization. Similar results were obtained with etidronate. Sanderson-stained calvariae also indicated a marked increase in unmineralized osteoid with ASARM peptide and etidronate groups. We conclude that PHEX and MEPE form a nonproteolytic protein interaction via the MEPE carboxy-terminal ASARM motif, and the ASARM peptide inhibits mineralization in vivo. The binding of MEPE and ASARM peptide by PHEX may explain why loss of functional osteoblast-expressed PHEX results in defective mineralization in HYP.


Subject(s)
Calcification, Physiologic , Extracellular Matrix Proteins/metabolism , Genetic Diseases, X-Linked/physiopathology , Glycoproteins/metabolism , Phosphoproteins/metabolism , Proteins/metabolism , Rickets/physiopathology , Amino Acid Sequence , Etidronic Acid/pharmacology , Fluorescence , Humans , Molecular Sequence Data , PHEX Phosphate Regulating Neutral Endopeptidase , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...