Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139937

ABSTRACT

An ideal wound dressing not only needs to absorb excess exudate but should also allow for a moist wound-healing environment as well as being mechanically strong. Such a dressing can be achieved by combining both a natural (alginate) and synthetic (poly(ethylene glycol) polymer. Interestingly, using an electron beam on (meth)acrylated polymers allows their covalent crosslinking without the use of toxic photo-initiators. The goal of this work was to crosslink alginate at different methacrylation degrees (26.1 and 53.5% of the repeating units) with diacrylated poly(ethylene glycol) (PEGDA) using electron-beam irradiation at different doses to create strong, transparent hydrogels. Infrared spectroscopy showed that both polymers were homogeneously distributed within the irradiated hydrogel. Rheology showed that the addition of PEGDA into alginate with a high degree of methacrylation and a polymer concentration of 6 wt/v% improved the storage modulus up to 15,867 ± 1102 Pa. Gel fractions > 90% and swelling ratios ranging from 10 to 250 times its own weight were obtained. It was observed that the higher the storage modulus, the more limited the swelling ratio due to a more crosslinked network. Finally, all species were highly transparent, with transmittance values > 80%. This may be beneficial for the visual inspection of healing progression. Furthermore, these polymers may eventually be used as carriers of photosensitizers, which is favorable in applications such as photodynamic therapy.

2.
Biosens Bioelectron ; 206: 114125, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35255315

ABSTRACT

Disease treatment with advanced biological therapies such as adalimumab (ADM), although largely beneficial, is still costly and suffers from loss of response. To tackle these aspects, therapeutic drug monitoring (TDM) is proposed to improve treatment dosing and efficacy, but is often associated with long sampling-to-result workflows. Here, we present an in-house constructed ADM-sensor, allowing TDM of ADM at the doctor's office. This biosensor brings fiber optic surface plasmon resonance (FO-SPR), combined with self-powered microfluidics, to a point of care (POC) setting for the first time. After developing a rapid FO-SPR sandwich bioassay for ADM detection on a commercial FO-SPR device, this bioassay was implemented on the fully-integrated ADM-sensor. For the latter, we combined (I) a gold coated fiber optic (FO) probe for bioassay implementation and (II) an FO-SPR readout system with (III) the self-powered iSIMPLE microfluidic technology empowering plasma sample and reagent mixing on the-cartridge as well as connection to the FO-SPR readout system. With a calculated limit of detection (LOD) of 0.35 µg/mL in undiluted plasma, and a total time-to-result (TTR) within 12 min, this innovative biosensor demonstrated a comparable performance to existing POC biosensors for ADM quantification in patient plasma samples, while requiring only 1 µL of plasma. Whereas this study demonstrates great potential for FO-SPR biosensing at the POC using ADM as a model case, it also shows huge potential for bedside TDM of other drugs (e.g. other immunosuppressants, anti-epileptics and antibiotics), as the bioassay is highly amenable to adaptation.


Subject(s)
Biosensing Techniques , Surface Plasmon Resonance , Adalimumab , Drug Monitoring , Fiber Optic Technology , Humans , Microfluidics , Point-of-Care Systems
3.
Polymers (Basel) ; 13(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33671032

ABSTRACT

Nitric oxide (NO•) is a free radical gas, produced in the human body to regulate physiological processes, such as inflammatory and immune responses. It is required for skin health; therefore, a lack of NO• is known to cause or worsen skin conditions related to three biomedical applications- infection treatment, injury healing, and blood circulation. Therefore, research on its topical release has been increasing for the last two decades. The storage and delivery of nitric oxide in physiological conditions to compensate for its deficiency is achieved through pharmacological compounds called NO-donors. These are further incorporated into scaffolds to enhance therapeutic treatment. A wide range of polymeric scaffolds has been developed and tested for this purpose. Hence, this review aims to give a detailed overview of the natural, synthetic, and semisynthetic polymeric matrices that have been evaluated for antimicrobial, wound healing, and circulatory dermal applications. These matrices have already set a solid foundation in nitric oxide release and their future perspective is headed toward an enhanced controlled release by novel functionalized semisynthetic polymer carriers and co-delivery synergetic platforms. Finally, further clinical tests on patients with the targeted condition will hopefully enable the eventual commercialization of these systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...