Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 8216, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38081838

ABSTRACT

Brain communication, defined as information transmission through white-matter connections, is at the foundation of the brain's computational capacities that subtend almost all aspects of behavior: from sensory perception shared across mammalian species, to complex cognitive functions in humans. How did communication strategies in macroscale brain networks adapt across evolution to accomplish increasingly complex functions? By applying a graph- and information-theory approach to assess information-related pathways in male mouse, macaque and human brains, we show a brain communication gap between selective information transmission in non-human mammals, where brain regions share information through single polysynaptic pathways, and parallel information transmission in humans, where regions share information through multiple parallel pathways. In humans, parallel transmission acts as a major connector between unimodal and transmodal systems. The layout of information-related pathways is unique to individuals across different mammalian species, pointing at the individual-level specificity of information routing architecture. Our work provides evidence that different communication patterns are tied to the evolution of mammalian brain networks.


Subject(s)
Macaca , White Matter , Humans , Male , Mice , Animals , Brain , Cognition , Sensation , Magnetic Resonance Imaging , Nerve Net , Mammals
2.
Commun Biol ; 6(1): 1238, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38062107

ABSTRACT

Technical advances in neuroimaging, notably in fMRI, have allowed distributed patterns of functional connectivity to be mapped in the human brain with increasing spatiotemporal resolution. Recent years have seen a growing interest in extending this approach to rodents and non-human primates to understand the mechanism of fMRI connectivity and complement human investigations of the functional connectome. Here, we discuss current challenges and opportunities of fMRI connectivity mapping across species. We underscore the critical importance of physiologically decoding neuroimaging measures of brain (dys)connectivity via multiscale mechanistic investigations in animals. We next highlight a set of general principles governing the organization of mammalian connectivity networks across species. These include the presence of evolutionarily conserved network systems, a dominant cortical axis of functional connectivity, and a common repertoire of topographically conserved fMRI spatiotemporal modes. We finally describe emerging approaches allowing comparisons and extrapolations of fMRI connectivity findings across species. As neuroscientists gain access to increasingly sophisticated perturbational, computational and recording tools, cross-species fMRI offers novel opportunities to investigate the large-scale organization of the mammalian brain in health and disease.


Subject(s)
Connectome , Magnetic Resonance Imaging , Animals , Magnetic Resonance Imaging/methods , Brain/physiology , Connectome/methods , Primates , Neuroimaging , Mammals
3.
Cereb Cortex ; 33(21): 10750-10760, 2023 10 14.
Article in English | MEDLINE | ID: mdl-37718159

ABSTRACT

Complement signaling is thought to serve as an opsonization signal to promote the phagocytosis of synapses by microglia. However, while its role in synaptic remodeling has been demonstrated in the retino-thalamic system, it remains unclear whether complement signaling mediates synaptic pruning in the brain more generally. Here we found that mice lacking the Complement receptor 3, the major microglia complement receptor, failed to show a deficit in either synaptic pruning or axon elimination in the developing mouse cortex. Instead, mice lacking Complement receptor 3 exhibited a deficit in the perinatal elimination of neurons in the cortex, a deficit that is associated with increased cortical thickness and enhanced functional connectivity in these regions in adulthood. These data demonstrate a role for complement in promoting neuronal elimination in the developing cortex.


Subject(s)
Microglia , Neurons , Mice , Animals , Brain , Signal Transduction , Synapses/physiology , Receptors, Complement , Neuronal Plasticity/physiology
4.
Nat Commun ; 13(1): 1056, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35217677

ABSTRACT

While shaped and constrained by axonal connections, fMRI-based functional connectivity reorganizes in response to varying interareal input or pathological perturbations. However, the causal contribution of regional brain activity to whole-brain fMRI network organization remains unclear. Here we combine neural manipulations, resting-state fMRI and in vivo electrophysiology to probe how inactivation of a cortical node causally affects brain-wide fMRI coupling in the mouse. We find that chronic inhibition of the medial prefrontal cortex (PFC) via overexpression of a potassium channel increases fMRI connectivity between the inhibited area and its direct thalamo-cortical targets. Acute chemogenetic inhibition of the PFC produces analogous patterns of fMRI overconnectivity. Using in vivo electrophysiology, we find that chemogenetic inhibition of the PFC enhances low frequency (0.1-4 Hz) oscillatory power via suppression of neural firing not phase-locked to slow rhythms, resulting in increased slow and δ band coherence between areas that exhibit fMRI overconnectivity. These results provide causal evidence that cortical inactivation can counterintuitively increase fMRI connectivity via enhanced, less-localized slow oscillatory processes.


Subject(s)
Brain , Magnetic Resonance Imaging , Animals , Magnetic Resonance Imaging/methods , Mice , Neural Pathways/physiology , Prefrontal Cortex/diagnostic imaging
5.
Curr Biol ; 32(3): 631-644.e6, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34998465

ABSTRACT

Human imaging studies have shown that spontaneous brain activity exhibits stereotypic spatiotemporal reorganization in awake, conscious conditions with respect to minimally conscious states. However, whether and how this phenomenon can be generalized to lower mammalian species remains unclear. Leveraging a robust protocol for resting-state fMRI (rsfMRI) mapping in non-anesthetized, head-fixed mice, we investigated functional network topography and dynamic structure of spontaneous brain activity in wakeful animals. We found that rsfMRI networks in the awake state, while anatomically comparable to those observed under anesthesia, are topologically configured to maximize interregional communication, departing from the underlying community structure of the mouse axonal connectome. We further report that rsfMRI activity in wakeful animals exhibits unique spatiotemporal dynamics characterized by a state-dependent, dominant occurrence of coactivation patterns encompassing a prominent participation of arousal-related forebrain nuclei and functional anti-coordination between visual-auditory and polymodal cortical areas. We finally show that rsfMRI dynamics in awake mice exhibits a stereotypical temporal structure, in which state-dominant coactivation patterns are configured as network attractors. These findings suggest that spontaneous brain activity in awake mice is critically shaped by state-specific involvement of basal forebrain arousal systems and document that its dynamic structure recapitulates distinctive, evolutionarily relevant principles that are predictive of conscious states in higher mammalian species.


Subject(s)
Connectome , Magnetic Resonance Imaging , Animals , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods , Connectome/methods , Magnetic Resonance Imaging/methods , Mammals , Mice , Nerve Net/physiology , Wakefulness
6.
Neuropsychopharmacology ; 46(6): 1194-1206, 2021 05.
Article in English | MEDLINE | ID: mdl-33342996

ABSTRACT

Cholinergic drugs acting at M1/M4 muscarinic receptors hold promise for the treatment of symptoms associated with brain disorders characterized by cognitive impairment, mood disturbances, or psychosis, such as Alzheimer's disease or schizophrenia. However, the brain-wide functional substrates engaged by muscarinic agonists remain poorly understood. Here we used a combination of pharmacological fMRI (phMRI), resting-state fMRI (rsfMRI), and resting-state quantitative EEG (qEEG) to investigate the effects of a behaviorally active dose of the M1/M4-preferring muscarinic agonist xanomeline on brain functional activity in the rodent brain. We investigated both the effects of xanomeline per se and its modulatory effects on signals elicited by the NMDA-receptor antagonists phencyclidine (PCP) and ketamine. We found that xanomeline induces robust and widespread BOLD signal phMRI amplitude increases and decreased high-frequency qEEG spectral activity. rsfMRI mapping in the mouse revealed that xanomeline robustly decreased neocortical and striatal connectivity but induces focal increases in functional connectivity within the nucleus accumbens and basal forebrain. Notably, xanomeline pre-administration robustly attenuated both the cortico-limbic phMRI response and the fronto-hippocampal hyper-connectivity induced by PCP, enhanced PCP-modulated functional connectivity locally within the nucleus accumbens and basal forebrain, and reversed the gamma and high-frequency qEEG power increases induced by ketamine. Collectively, these results show that xanomeline robustly induces both cholinergic-like neocortical activation and desynchronization of functional networks in the mammalian brain. These effects could serve as a translatable biomarker for future clinical investigations of muscarinic agents, and bear mechanistic relevance for the putative therapeutic effect of these class of compounds in brain disorders.


Subject(s)
Muscarinic Agonists , Thiadiazoles , Animals , Hippocampus/metabolism , Mice , Muscarinic Agonists/pharmacology , Pyridines , Receptor, Muscarinic M1/metabolism , Receptor, Muscarinic M4/metabolism
7.
Curr Biol ; 29(14): 2295-2306.e5, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31303490

ABSTRACT

Spontaneous brain activity as assessed with resting-state fMRI exhibits rich spatiotemporal structure. However, the principles by which brain-wide patterns of spontaneous fMRI activity reconfigure and interact with each other remain unclear. We used a framewise clustering approach to map spatiotemporal dynamics of spontaneous fMRI activity with voxel resolution in the resting mouse brain. We show that brain-wide patterns of fMRI co-activation can be reliably mapped at the group and subject level, defining a restricted set of recurring brain states characterized by rich network structure. Importantly, we document that the identified fMRI states exhibit contrasting patterns of functional activity and coupled infraslow network dynamics, with each network state occurring at specific phases of global fMRI signal fluctuations. Finally, we show that autism-associated genetic alterations entail the engagement of atypical functional states and altered infraslow network dynamics. Our results reveal a novel set of fundamental principles guiding the spatiotemporal organization of resting-state fMRI activity and its disruption in brain disorders.


Subject(s)
Autistic Disorder/physiopathology , Brain/physiology , Magnetic Resonance Imaging , Animals , Autistic Disorder/genetics , Cluster Analysis , Female , Male , Mice , Mice, Inbred C57BL , Random Allocation , Rest , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...